HR-AFGM-2444S

24-Gigabit PoE Port + 4-Gigabit Combo Port

Web Manual

Ver. 1.0

Content

HR-AFGM-2444S	1
24-Gigabit PoE Port + 4-Gigabit Combo Port	1
Web Manual	1
Ver. 1.0	1
0 Foreword	6
0.1 Target Audience	6
0.2 Manual Convention	6
1 Management Software Specification	7
2 Web Page Login	9
2.1 Log in the Network Management Client	9
2.2 Constitution of Client Interface	10
2.3 Navigation Tree on Web Interface	11
3 System Configuration	18
3.1 System Info	18
3.2 Network Configuration	18
3.3 User Configuration	19
3.4 Log Configuration	20
3.5 Telnet Configuration	22
3.6 HTTPS Configuration	22
3.7 Diagnostics Test	23
4 Port Configuration	25
4.1 Physical Port	25
4.2 Storm Policing	26
4.3 Port Rate limiting	28
4.4 Port Mirroring	29
4.5 Link Aggregation	31
4.5.1 About Link Aggregation	31
4.5.2 Add Static Link Aggregation	32
4.5.3 Add Dynamic Link Aggregation	35

4.6 Port Isolation	38
4.7 Port Statistics	39
5 PoE	41
5.1 PoE Port Setting	41
5.2 POE Port Timer Setting	42
6 L2 Configuration	43
6.1 VLAN Configuration	43
6.2 MAC VLAN	49
6.3 Protocol VLAN	52
6.4 Voice VLAN	57
6.5 MAC Configuration	62
6.5.1 MAC Configuration	62
6.6 MSTP Configuration	65
6.6.1 Global Configuration	66
6.6.2 Instance Configuration	68
6.6.3 Instance Port Configuration	70
6.6.4 Port Configuration	71
6.7 IGMP Snooping Configuration	76
6.7.1 IGMP Snooping Configuration	76
6.7.2 Static Multicast	78
6.8 DHCP Snooping Configuration	79
6.8.1 DHCP Snooping Global Configuration	80
6.8.2 Static Binding	82
6.8.3 DHCP Snooping Port Configuration	83
7 Network Security	88
7.1 DoS Attack Resistance	88
7.1.1 Function Configuration	88
7.1.2 Port Configuration	89
7.2 ACL Configuration	90
7.2.1 MAC ACL Configuration	91

7.2.2 IPv4 ACL Configuration	93
7.2.3 IPv6 ACL Configuration	95
7.2.4 ACL Binding Configuration	98
8 Advanced Configuration	99
8.1 QoS Configuration	101
8.1.1 Basic Configuration	101
8.1.2 Queue Scheduling	102
8.1.3 CoS Mapping	103
8.1.4 DSCP Mapping	104
8.1.5 IP Priority Mapping	105
8.2 LLDP Configuration	106
8.2.1 LLDP Function Configuration	107
8.2.2 Port Configuration	108
8.2.3 Neighbor Info	110
8.3 SNMP Configuration	110
8.3.1 View Configuration	111
8.3.2 Group Configuration	112
8.3.3 Group Configuration	113
8.3.4 User Configuration	114
8.3.5 Engine ID Configuration	116
8.3.6 Trap Configuration	116
8.3.7 Notification Configuration	117
8.4 RMON Configuration	118
8.4.1 Port Statistics	119
8.4.2 History Configuration	119
8.4.3 Event Configuration	121
8.4.4 Alarm Configuration	122
8.5 DNS Configuration	124
8.6 System Time	126
9 DHCP	127

9.1 DHCP Server brief introduction	127
9.2 IP address assignment of DHCP	128
9.2.1 IP address allocation strategy	128
9.2.2 Dynamic IP address acquisition process	128
9.3 DHCP global configuration	129
9.4 IP Pool Setting	130
9.5 VLAN IF Address Group Setting	131
9.6 Client List	132
9.7 Client Static Binding Table	133
10 System Maintenance	133
10.1 Configuration Management	133
10.2 Configuration Saving	135
10.4 Firmware Management	136

Revision history

Date	Version	Description
Oct. 10, 2020	V 1.0	The first edition

0 Foreword

0.1 Target Audience

This manual is prepared for the installers and system administrators who are responsible for network installation, configuration and maintenance. It assumes that the user has understood all network communication and management protocols, as well as the technical terms, theoretical principles, practical skills, and expertise of devices, protocols and interfaces related to networking. Work experience in Graphical User Interface (GUI), Command-line Interface, Simple Network Management Protocol (SNMP) and Web Explorer is also required.

0.2 Manual Convention

The following approaches should prevail.

GUI Convention	Description
Interpretation	Describe operations and add necessary information.
Caution	Remind the user of cautions as improper operations will result in data loss or equipment damage.

1 Management Software Specification

1. Laye	er 2 Functions		
1.1	Port Management	Enable/disable ports	Available
		Configure the speed, duplex and MTU	Available
		Flow control	Available
		Check the port information	Available
1.2	Port Mirroring	Ingress/egress directions of port and aggregation group	Available
1.3	Rate Limit	Determine the bit rate by chips	Available
			Bit rate of 32 Kbps
1.4	Port Isolation	Configure port isolation	Available
1.5	Storm Policing	Suppress the storms generated from unknown unicast, unknown multicast, and broadcast	Available
1.6	Link Aggregation	gregation Static link aggregation in manual mode	
		Dynamic aggregation in LACP mode	Available
1.7	VLAN Access		Available
		Trunk	Available
		Hybrid	Available
		QinQ and VLAN division based on port, protocol and MAC	Available
		Dynamic VLAN registration of GVRP	(128) Available
		Voice VLAN (to be available)	(16 OUI)
1.0			Available
1.8	MAC	Add or delete statically	Available
		Restrict the number of MAC address	Available
		Set the dynamic aging time	Available
1.9	Spanning Tree	802.1d (STP)	Available

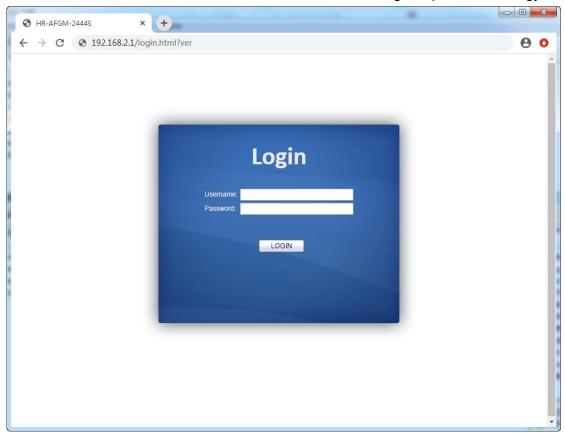
			Available
		802.1w (RSTP)	
		802.1s (MSTP)	Available
1.10	Multicast	Add or delete statically;	Available
		IGMP Snooping	4 '1 11
		MLD Snooping	Available
		V1/2/3 dynamic multicast snooping	Available
1.11	DDM	SFP/SFP+DDM	Available
2. Extend	ded Functions		
2.1	ACL	Port numbers based on Source/Destination MAC, protocol type, Source/Destination IP, and L4 port.	Available
2.2	QoS	Classified by 802.1p (CoS)	Available
		Classified by DSCP	Available
		Classified by Source/Destination IP and port	Available
		SP and WRR scheduling algorithms	Available
		Committed Access Rate (CAR)	Available
2.3	LLDP	Link Layer Discovery Protocol (LLDP)	Available
2.4	User Configuration	Add/delete a user	Available
2.5	Log	Login, operation, state, and event logs	Available
2.6	Attack Resistance	DoS defense	Available
		Protect CPU and restrict message uploading rate	Available
		ARP binding (IP, MAC, Port)	Available
2.7	Authentication	802.1x port authentication	Available
		AAA	Available
2.8	Network Diagnostics	Ping, Telnet and traceroute	Available
2.9	System Management	Unit resetting, configuration saving/restoring, upgrade, time setting, etc.	Available

4. Management Functions					
4.1	CLI	Manage serial port command lines	Available		
4.2	Telnet	Remotely control Telnet	Available		
4.3	SSH	Remotely control SSHv1/SSHv2	Available		
4.4	SNMP	SNMP v1/2/3	Available		
		Trap: ColdStart, WarmStart, LinkDown, and LinkUp	Available		
4.5	Web	L2 setting, L2&3 discovery	Available		
4.6	RMON	RMON v1	Available		
5. Other Functions					
5.1 DHCP Snooping and Option 82					
5.2 PoE configuration, scheduling management, etc.					
5.3 Dynamic ARP inspection					
5.4 TACACS and authentication					
5.5 DNS configuration					
5.6 Port security configuration					
5.7 MVR protocol					
5.8 VCT					
5.9 UDLD protocol					

2 Web Page Login

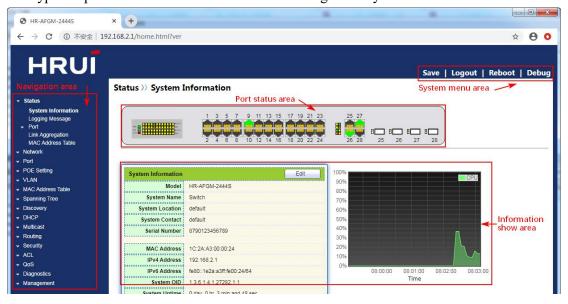
2.1 Log in the Network Management Client

Type in the default switch address: http://192.168.2.1 and press "Enter".


Description:

Browser standards: superior to IE 9.0, Chrome 23.0 and Firefox 20.0

Keep the IP network segment of PC consistent with that of switch but differentiate the IP address as you log in. Set PC's IP address of 192.168.2.x and the subnet mask of 255.255.255.0 for the first login ($1 \le x \le 254$).


A login window appears as follows. Type in the default username of "admin" and the password of "admin". Click the "Log in" to see the switch system.

2.2 Constitution of Client Interface

The typical operation interface of Web network management system is as follows.

2.3 Navigation Tree on Web Interface

Menu items such as system state, network configuration, port, PoE setting, VLAN function, MAC address table, STP, topology discovery, multicast, security, ACL, QoS, device diagnostics and management are available on the web network management client. Each item contains submenus. Navigation tree is detailed as follows:

Iollows:	G-1	C 1	D : .:
Menu Items	Submenus	Secondary	Description
		Submenus	
System State	System		Display the port state and product info
	Log		Display the device running and
			operation logs
	Port	Port Statistics	Display the detailed port statistics
		Port Fault Protection	Display the faults occurring to ports
		Bandwidth	Display the bandwidth utilization per
		Utilization Rate	unit time of all ports
	Link Aggregation		Display the aggregation group state
			and members
	MAC Address		Display the MAC address table of the
	Table		current device
Network	IP Address		Configure and view the management
Configuration			IP of the current device
	DNS		Configure and view the DNS and
			server setting
	DNS Host		Configure and view the DNS Server
			and dynamic host mapping table
	System Time		Configure and view the current system
			time
Port	Port		Configure and view all ports
	Configuration		
	Port Fault		Configure and view the fault
	Protection		protection
	Link Aggregation	LAG Configuration	Configure and view the port & strategy
			balancing algorithms contained in
			LAG
		Port Configuration	Configure and view the LAG
		LACP Configuration	Check LACP system priority and port
			configuration
	EEE		Configure and view the EEE state and
	Configuration		info

	1	1	Tononzhon Hongrai Optioai Toonii
	Jumbo Frame		Configure and view the length of the
	Configuration		max message forwarded by system
	Port Security		Configure and view the rate limiting of
			port security, as well as port state
	Port Isolation		Configure and view the port isolation
	Storm Policing		Configure and view the port storm
			policing
	Mirroring		Configure and view the port mirroring
PoE	PoE Port		Configure and view the PoE port
Configuration	PoE Port Timing		Configure and view the timing switch
			of PoE port
VLAN	VLAN	VLAN Creating	Configure and view the VLAN info of
Function	Configuration		the device
	_	VLAN Setting	Configure and view the VLAN
			configuration of all ports
		Member	Configure and view the port info of
		Configuration	VLANs
		Port Configuration	Configure and view the PVID and
			VLAN attributes of ports
	Voice VLAN	Function	Configure and view the function
		Configuration	switch and port state
		Voice OUI	Configure and view the OUI
		Configuration	performance
	Protocol VLAN	Protocol Group	Configure and view the protocol
	Configuration	Configuration	VLAN group
		Protocol Group	Configure and view the protocol
		Binding	VLAN port and group binding.
	MAC VLAN	MAC Group	Configure and view the MAC VLAN
	Configuration	Configuration	group
		MAC Group	Configure and view the MAC VLAN
		Binding	port and group binding
	GVRP	Function	Configure and view the functional
		Configuration	system and port state
		Member List	Configure and view the VLANs
			learned and the port members
		Message Statistics	Configure and view the message
			statistics related to ports
MAC Address	Dynamic MAC		Configure and view the dynamic MAC
Table	Address Table		addresses and aging time of the device
	Static MAC		Configure and view the static MAC

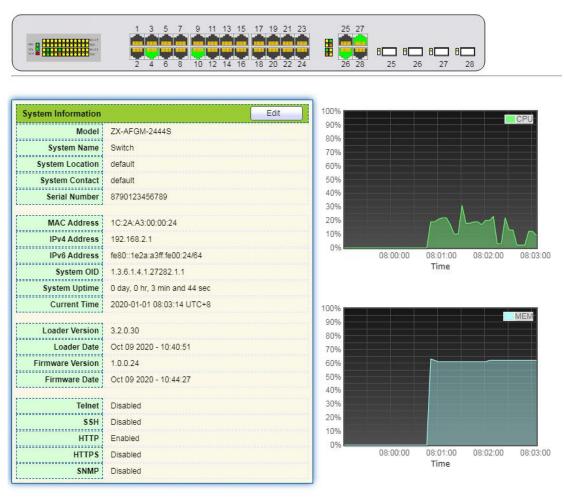
	Address Table		address tables of the device
	MAC Address		Configure and view the MAC address
	Filtering Table		tables to be filtered
	MAC Address		Configure and view the MAC address
	Table for Port		table learned by port security
	Security		
STP	Function		Configure and view the STP state and
	Configuration		attributes
	Port		Configure and view the port
	Configuration		attributions of STP
	Instance		Configure and view the instance
	Configuration		attributes of STPs
	Instance Port		Configure and view the instances (incl.
	Configuration		port info) of STPs
	Message		Configure and view the STP message
	Statistics		statistics of each port
Topology	LLDP	Function	Configure and view the attributes
Discovery		Configuration	related to LLDP
		Port Configuration	Configure and view the transmitting &
			receiving state of LLDP at each port
		MED Network	Configure and view the MED network
		Strategy	strategy table entry
		Configuration	
		MED Port	Configure and view the MED state at
		Configuration	each port
		Message Preview	Configure and view the detailed LLDP
			messages at each port
		Device Info	Configure and view the LLDP and
			LLDP-MED state
		Neighbor Info	Configure and view the LLDP
			neighbor info
		Message Statistics	Configure and view the transmitting &
			receiving state of LLDP message at
			each port
Multicast	Basic Functions	Function	Configure and view the function
		Configuration	configuration
		Static Multicast	Configure and view the relevant static
		Configuration	multicast info
		Routed Port	Configure and view the multicast
		Configuration	routed port info
		Forwarding Port	Configure and view the multicast

		[a .c:	
		Configuration	forwarding port info
		Port Limit	Configure and view the multicast limit
			at each port
		Filtering Rule	Configure and view the multicast
		Configuration	addresses filtered
		Filtering Rule	Configure and view the binding info
		Binding	related to filtering rule and ports
	IGMP Snooping	Function	Configure and view the switch,
		Configuration	version, etc.
		Querier	Configure and view the querier state
		Configuration	
		Message Statistics	Configure and view the protocol
			messages
	MLD Snooping	Function	Configure and view the protocol,
	M22 sheeping	Configuration	switch, etc.
		Message Statistics	Configure and view the protocol
		Wiessage Statistics	messages
	MVR	Function	Configure and view the attribute info
	141 4 10	Configuration	such as switch
		Port Configuration	Configure and view the state at each
		Tort Configuration	port
		Group Address	Configure and view the function,
		Configuration	VLAN and group address
Security	RADIUS		Configure and view the info related to
			the servers
	TACACS+		Configure and view the info related to
			the servers
	AAA	Authentication	Configure and view the login
		Method	authentication method
		Configuration	
		Login	Configure and view the authentication
		Authentication	methods of terminals
	Management	VLAN Management	Configure and view the current VLAN
	Channel		management info
	Configuration	Service	Configure and view the service
		Management	management mode and relevant
		<i>G</i>	attributes
		ACL Management	Configure and view the ACL aiming at
		1101 Managoment	management channels
		ACE Management	Configure and view the ACE
		ACE Management	
			configuration of management channels

			Official field Floring of Control
	Authentication	Function	Configure and view the authentication
	Function	Configuration	attributes
		Port Configuration	Configure and view the authentication
			info at each port
		MAC Local Account	Configure and view the list of MAC
			local accounts
		Web Local Account	Configure and view the list of Web
			local accounts
		Session Info	Configure and view the info related to
			session authentication
	DoS Attack	Function	Configure and view the switch option
	Resistance	Configuration	
		Port Configuration	Configure and view the switch option
			at ports
	Dynamic ARP	Function	Configure and view the dynamic ARP
	Inspection	Configuration	inspection
		Message Statistics	Configure and view the messages
			statistics in APR inspection state at
			each port
	DHCP Snooping	Function	Configure and view the switch and
		Configuration	state
		Message Statistics	Configure and view the DHCP
			message statistics received by each
			port
		Option 82 Function	Configure and view the attributes
		Configuration	related to Option 82
		Option 82 Circuit ID	Configure and view the Circuit ID of
		Configuration	Option 82
	IP Source Guard	Port Configuration	Configure and view the state at ports
		IMPV Binding	Configure and view the binding tables
		8	of IP, MAC, Port and VLAN
		Database Storage	Configure and view the storage and
			info of the binding table entry
ACL	MAC ACL		Configure and view the MAC ACL
	Configuration		rules
	MAC ACE		Configure and view the MAC ACE
	Configuration		table entries
	IPv4 ACL		Configure and view the IPv4 ACL
	Configuration		rules
	IPv4 ACE		Configure and view the IPv4 ACE
	Configuration		table entries
	Comiguianon		more entries

		ı	I Sherizhen Hongrui Optical Techin
	IPv6 ACL		Configure and view the IPv6 ACL
	Configuration		rules
	IPv6 ACE		Configure and view the IPv6 ACE
	Configuration		table entries
	ACL Binding		Configure and view the ACL rules and
			the port binding application
QoS	Basic Function	Function	Configure and view the QoS switch
		Configuration	and state
		Queue Scheduling	Configure and view the algorithm of
			queue scheduling
		CoS Mapping	Configure and view the priority and
			local queue mapping table
		DSCP Mapping	Configure and view the priority and
			local queue mapping table
		IP Priority Mapping	Configure and view the priority and
			local queue mapping table
	Bandwidth Rate	Rate Limiting	Configure and view the configuration
	Limiting		of port rate limiting
		Egress Queue Rate	Configure and view the rate limiting
		Limiting	configuration based on egress queue
Device	Log Function	Function	Configure and view the switch and
Diagnostics		Configuration	state
		Remote Server	Configure and view the address of
		Configuration	remote servers
	Ping		Network diagnostics by Ping
	Traceroute		Network diagnostics by traceroute
	Electrical		Electrical interface link diagnostics by
	Interface Test		VCT
	Optical Module		Check the SFP module at optical
			interfaces
	UDLD Protocol	Function	Configure and view the switch and
		Configuration	state
		Neighbor Info	Configure and view the neighbor state
Device	User		Configure and view the user info
Management	Configuration		
	Firmware	Upgrade/Backups	Update software
	Management		
	Configuration	Upgrade/Backups	Update configuration files
	Management	Configuration	Save the configuration files supporting
		Saving	device running
	1	<u> </u>	<u> </u>

SNMP	View Configuration	Configure and view the SNMP
Configuration		function view table entry
	Group Configuration	Configure and view the SNMP group
	Community	Configure and view the SNMP
	Configuration	Community
	User Configuration	Configure and view the SNMP user
		attributes
	Engine ID	Configure and view the SNMP and
	Configuration	remote Engine IDs
	Trap Configuration	Configure and view the SNMP Trap
		switch and state
	Notification	Configure and view the SNMP
	Configuration	Notification server state
RMON	Message Statistics	Configure and view the message
Configuration		statistics history of all ports
	History	Configure and view the history record
	Configuration	state
	Event Configuration	Configure and view the event state
	Alarm Configuration	Configure and view the alarm state



3 System Configuration

3.1 System Info

According to the switch connected, web network management panel directly displays the port and product info, incl.: number of ports, port states, product info, device states, function on-off states, etc. Instructions:

1. Click the "System Configuration > System Info" in the navigation tree as follows:

Description:

Mouseover a port to check the port No., type, rate and state.

"Modify" the "System Name", "Location" and "Contact" in the product info. "Apply" and finish.

3.2 Network Configuration

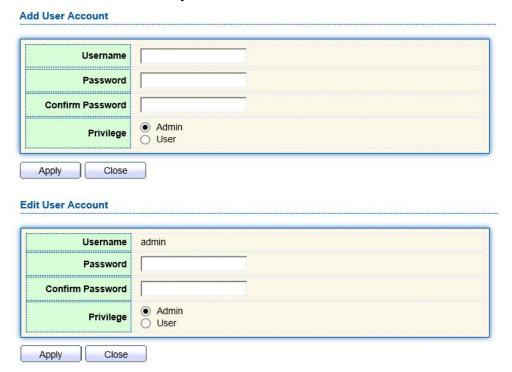
Change the management IP address on web interface.

Instructions:

- 1. Click the "Network Configuration > IP Address Setting" in the navigation bar to discover IPv4 address of 192.168.2.1/24 by default as follows:
- 2. Repeat this step, select the "Static" address type, enter the IPv4 address of 192.168.2.1, the subnet mask of 255.255.255.0, and the network management of 192.168.2.254. "Apply" and finish.

v4 Address	O OLE	
Address Type	Static Dynamic	
IP Address	192.168.2.1]
Subnet Mask	255.255.255.0]
Default Gateway	192.168.2.254	
ub IPv4 Address		
Enabled	Enable	
IP Address	0.0.0.0	
Subnet Mask	0.0.0.0	
v6 Address		***************************************
Auto Configuration	✓ Enable	
DHCPv6 Client	Enable	
	Cliable	
IPv6 Address		
Prefix Length	0	(0 - 128)
IPv6 Gateway		
perational Status		
perational Status IPv4 Address	192.168.2.1	
*******************	192.168.2.1 192.168.2.254	
IPv4 Address IPv4 Default Gateway Sub IPv4 Address		
IPv4 Address IPv4 Default Gateway	192.168.2.254	
IPv4 Address IPv4 Default Gateway Sub IPv4 Address	192.168.2.254 0.0.0.0	

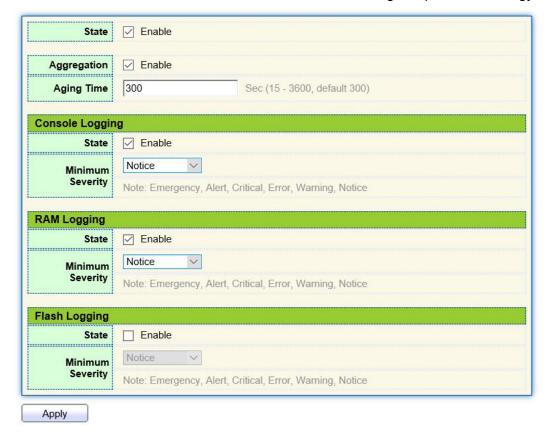
3.3 User Configuration


Users can check and modify the current username, password and authority of the switch.

Instructions:

1. Click the "Device Management > User Configuration" in the navigation bar to discover the username of "admin" and the authority of "administrator" by default as follows:

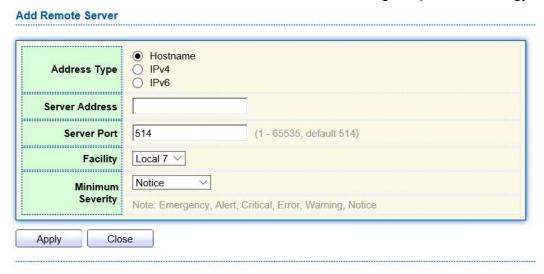
2. "Add" a new user account and "Modify" the selected user attribute as follows:


3.4 Log Configuration

It configures log switch, info integration, aging time and configuration level. It also uploads the switch's work logs to the TFTP Server.

Instructions:

1. Click the "Device Diagnostics > Log Function > Function Configuration" in the navigation bar to switch logs on/off, select the egress terminal, configure the severity level, etc. as follows:



2. Click the "Device Diagnostics > Log Function > Remote Server Configuration" in the navigation bar to add and view the server configuration as follows:

3. "Add" a new remote log server and "Modify" the selected configuration. "Apply" and finish as follows:

3.5 Telnet Configuration

Users can enable or disable the Telnet login option on web interface.

Instructions:

1. Click the "Security > Management Channel Configuration > Service Management" in the navigation bar to enable or disable the service by checking the "Telnet" tag. "Apply" and finish as follows:

3.6 HTTPS Configuration

Users can enable or disable the HTTP & HTTPS login options on web interface.

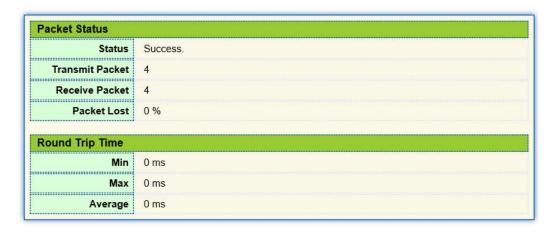
Instructions:

1. Click the "Security > Management Channel Configuration > Service Management" in the navigation bar to enable or disable the services by checking the "HTTP" and "HTTPS" tags. "Apply" and finish as follows:

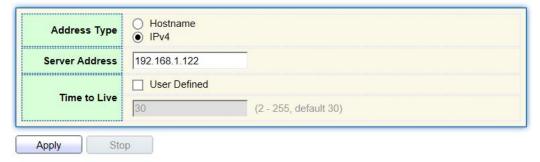
3.7 Diagnostics Test

Ping command checks the availability of specified IP addresses and host names and transmits statistics accordingly.

Instructions:


1. Click the "Device Diagnostics > Ping" in the navigation bar to enter a host name or an IP address, as well as the number of tests as follows:

2. Click the "Ping" to accept the packet-transmitting test from system to verify address validity, and output the result as follows:



Ping Result


Traceroute measures the duration from transmitting a small packet to receiving it back from the target device. Instructions:

1. Click the "Device Diagnostics > Traceroute" in the navigation bar to enter a host name or IP address to define the message existence time as follows:

2. "Apply" to test and output the result as follows:

Traceroute Result

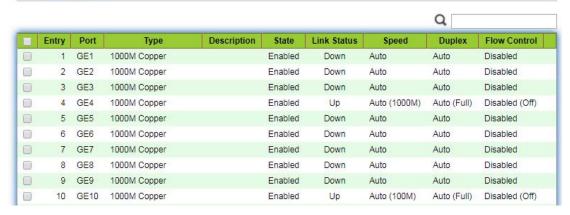
Electrical interface test evaluates the ingress cable state and locates the faults (about 5 m by error) according

to the reflected voltage strength

Instructions:

1. Click the "Device Diagnostics > Electrical Interface Test" in the navigation bar to select a port for test as follows:

2. Click the "Copper Test" and output the result as follows:


4 Port Configuration

4.1 Physical Port

Interfaces should be identified so that users can inquire and configure Ethernet interfaces as they want. Instructions:

1. Click the "Port > Port Configuration" in the navigation bar:

2. Select the port(s) to be configured, and "Modify" as follows:

Edit Port Setting Port GE3-GE5 Description Enable State Auto Auto - 10M Auto - 100M Auto - 100M Auto - 1000M Auto - 1000M 10G Speed Auto - 10M/100M Auto Full Duplex Half Auto Flow Control Enable Disable Apply Close

Configuration items are as follows.

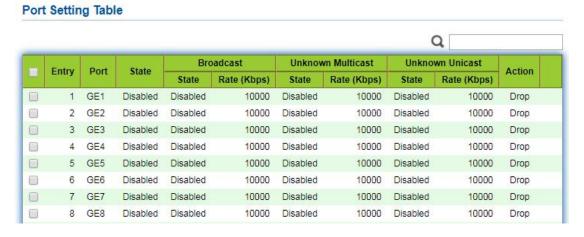
Configuration	Description
Items	
Interpretation	Users can identify the specified ports by interpreting them as
	required.
State	Users can enable or disable the ports as required.
Rate	Configurable auto negotiation with mandatory 10 Mb, 100 Mb and
	1,000 Mb states. Interface rates including 10 Mbit/s, 100 Mbit/s and
	1,000 Mbit/s are available to Ethernet electrical interfaces and are
	optional as required.
Duplex	Configurable auto negotiation with full or half duplexes.
Flow Control	After it is enabled on both local network and opposite network
	devices, the local one will notify the other to stop transmitting
	messages in the presence of network congestion. The opposite one
	will execute the command temporarily to ensure zero message loss.
	Disable-Disabled reception and transmission of PAUSE frame;
	Enable-Enabled reception and transmission of PAUSE frame;
	Auto negotiation-Negotiate PAUSE frame with opposite network
	devices automatically.

4.2 Storm Policing

Storm policing principles

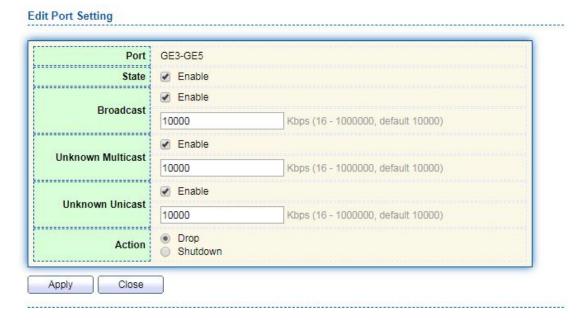
Storms generated via broadcast, unknown multicast and unicast messages are prevented as follows. These messages will be suppressed subject to packet rates respectively. The average rate of the messages received by monitoring interfaces will be compared with the max threshold configured during an inspection interval. Configured storm policing will be performed at this interface if the average rate exceeds the max threshold.

When a L2 Ethernet interface receives the broadcast, unknown multicast or unicast messages, the device will forward them to other L2 interfaces in a same VLAN (Virtual Local Area Network) if the egress interface cannot be recognized according to destination MAC addresses. As a result, broadcast storm may occur to degrade device operation performance.


Three kinds of message flow can be controlled by storm policing characteristics to stay away from broadcast storms.

Instructions:

1. Click the "Port > Storm Policing" in the navigation bar to configure the attributes related to storm policing such as mode as follows:



2. Select the appropriate port and "Modify" it by configuring the policing rates of broadcast, unknown multicast and unicast storms at each port.

3. Configure info such as storm switch and rate, "Apply" and finish as follows:

4.3 Port Rate limiting

GE8

Disabled

It refers to the rate restriction on transmitting and receiving data at physical interfaces.

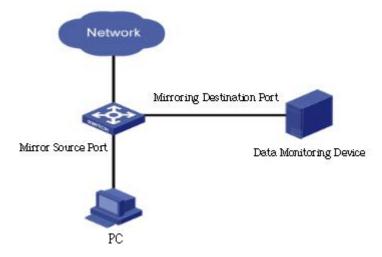
Background

Restrict the rate limiting at the egress before transmitting flow, thus controlling all outgoing message flow; Restrict the rate limiting at the ingress before receiving flow, thus controlling all incoming message flow; Instructions:

1. Click the "QoS > Bandwidth Rate Limiting > Port Rate Limiting" in the navigation bar to choose a rate-limiting port and check the current configuration as follows:

Disabled

2. Select the port (s) for rate limiting, "Modify" it at the bottom to switch the function and specify the rate. "Apply" and finish as follows:

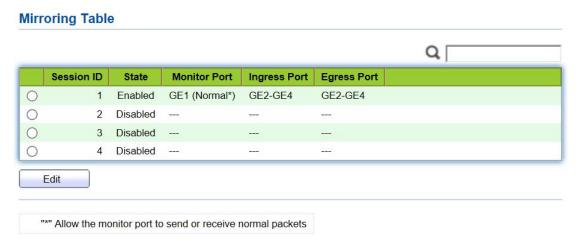

| Port | GE3-GE5 | Enable | 1000000 | Kbps (16 - 1000000) | | Egress | 1000000 | Kbps (16 - 1000000) | | Apply | Close |

Configuration parameters

Configuration Items		Description
Ingress	Enabled	Rate limiting switch
	Rate	Rate ranges from 16 to 1,000,000 Kbps
Egress	Enabled	Rate limiting switch
	Rate	Rate ranges from 16 to 1,000,000 Kbps

4.4 Port Mirroring

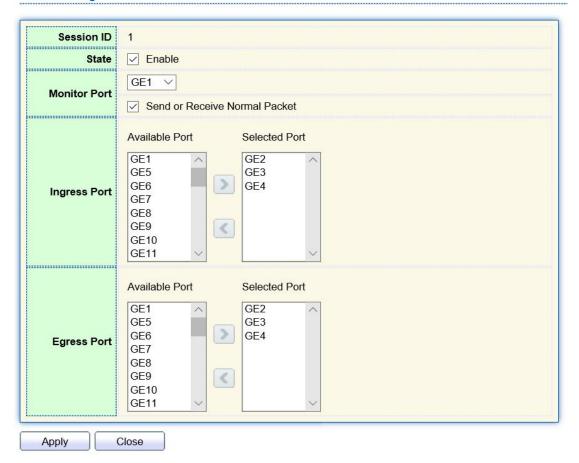
Port Mirroring copies the message of a specified switch port to the destination port. The copied port is the Source Port, and the copying port is the Destination Port. Destination Port accesses to data inspection devices so that users can analyze the messages received to monitor network and troubleshoot as follows:


Instance

PC1 and PC2 access Switch A through interface GE1 and GE2 respectively.

Users intend to monitor the messages transmitted from PC2 to PC1.

Instructions:


1. Click the "Port > Mirroring" in the navigation bar. 4 sets of flow mirroring rules can be configured as follows:

2. Select one session and "Modify" it in the mirroring group configuration interface:

Edit Mirroring

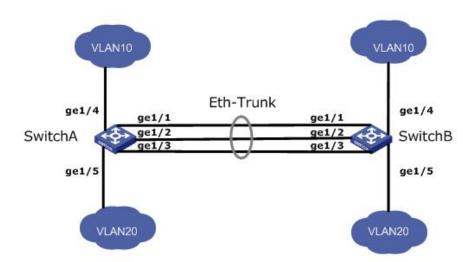
Interface data are as follows

Configuration Items	Description	
Session ID	The switch has 4 session IDs by default.	
State	The mirroring group can be enabled or not.	
Destination Port	Only one ordinary physical port can be selected, excluding link aggregation port and source port.	
Source Ingress Port	Any message received will be mirrored to the destination port.	
Source Egress Port	Any message transmitted will be mirrored to the destination port.	

4.5 Link Aggregation

4.5.1 About Link Aggregation

Link Aggregation broadens bandwidth and reliability by bundling a group of physical interfaces into a single


logical interface.

LAG (Link Aggregation Group) is a logical link bundled by multiple Ethernet links (Eth-Trunk).

Ceaselessly expanding network size increases users' demands of link bandwidth and reliability. Traditionally, high-speed interface board or the compatible equipment is usually replaced to optimize bandwidth, which is expensive and inflexible.

Link Aggregation Technology bundles multiple physical interfaces into a single logical interface without upgrading hardware. Its backup mechanism not only improves reliability, but also shares the flow load on different physical links.

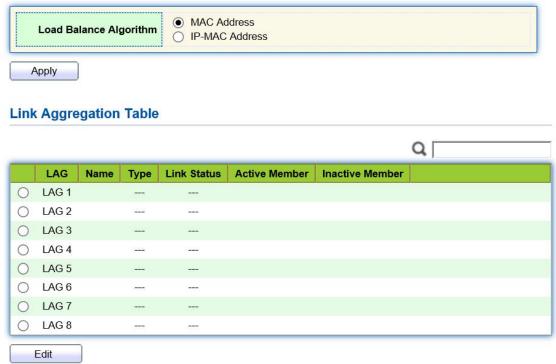
As shown below, Switch A is linked with Switch B through three Ethernet links which are bundled into an Eth-Trunk logical link. Its bandwidth equals to that of the three links in total, thus broadening the bandwidth. Meanwhile, these three links back up mutually to be more reliable.

Link Aggregation can meet the following demands:

Insufficient bandwidth of two switches connected with one link.

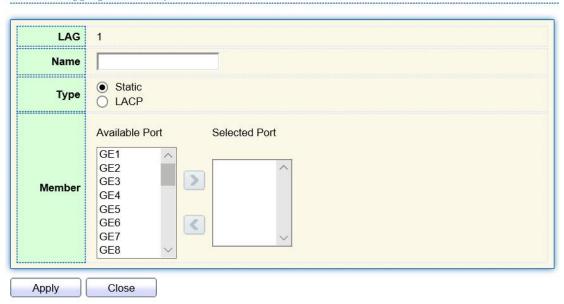
Insufficient reliability of two switches connected with one link.

Link Aggregation can be divided into Manual Mode and LACP Mode in accordance with Link Aggregation Control Protocol (LACP) state.


In the first mode, Eth-Trunk establishment, member interface access should be added manually without LACP. It is also called the Load-sharing Mode because all links are involved in data forwarding and load sharing. In case any active link fails, LAG will average load with the remaining ones. This mode is preferred under the circumstance that two directly connected devices require a larger link bandwidth but has no access to LACP.

4.5.2 Add Static Link Aggregation

Instructions for adding a Static Link Aggregation:


1. Click the "Port > Aggregation > LAG Configuration", select a load-balancing algorithm with a radio button. "Apply" and finish as follows:

2. Select one of 8 LAGs available, "Modify" the configuration page as follows:

Edit Link Aggregation Group

Interface data are as follows

Configuration	Description
Items	
LAG	There are 8 LAGs numbering from 1 to 8.
Name	Description of LAG, which can be modified as needed.

33

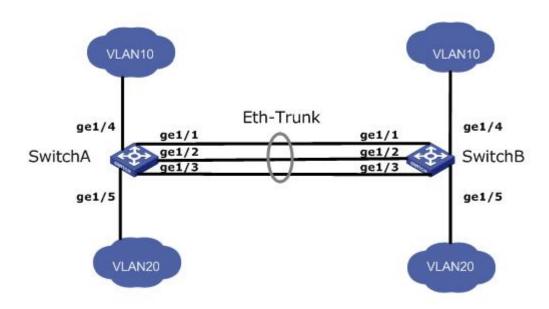
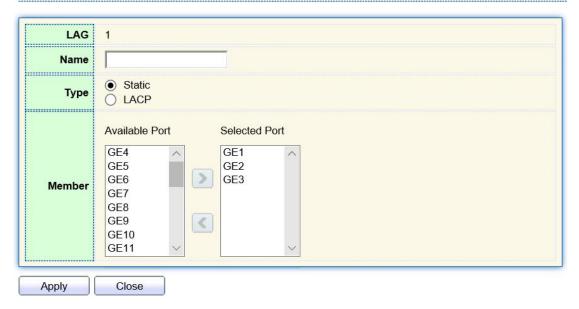

Mode	Select from the manual mode and the LACP mode.
Member	Up to 8 member ports are available in LAG.

Illustration:

As shown below, Switch A and Switch B connect VLAN 10 and 20 via Ethernet respectively, with large data flow between them.

Both Switch A and B are expected to provide superior link bandwidth for VLAN communication. Meanwhile, there should be the redundancy for reliable data transmission and links.

Networking diagram LAG in manual mode



Instructions:

1. Similar to the steps of Switch B configuration, Switch A creates an Eth-Trunk interface and accesses member interfaces to broaden link bandwidth. Click the "Port > Aggregation > LAG Configuration", choose "LAG 1" and port GE1, 2 and 3 and move them to the selected ports on the right. "Apply" and finish as follows.

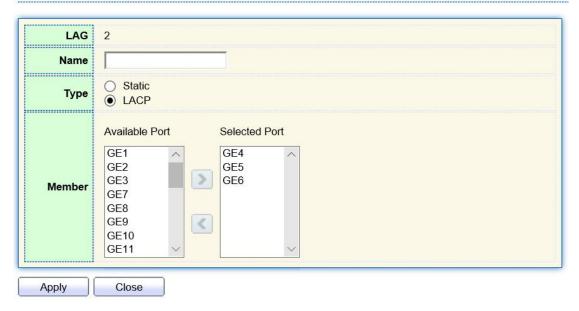
Edit Link Aggregation Group

4.5.3 Add Dynamic Link Aggregation

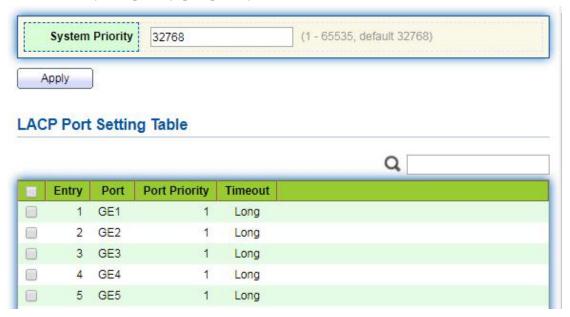
Dynamic Link Aggregation

LACP (Link Aggregation Control Protocol), based on IEEE 802.3ad Standard, dynamically aggregates and disaggregates links. It exchanges info with the opposite network devices through LACPDU (Link Aggregation Control Protocol Data Unit).

After a port uses LACP, it will inform the opposite network device of system priority, system MAC, port priority and No., and operation Key by transmitting a LACPDU. The opposite device will compare such info with that saved by other ports after receiving it, thus reaching an agreement on port participation in or quitting from a dynamic aggregation.


Dynamic LACP aggregation is automatically created or deleted by system, that is, internal ports can be added or removed by themselves. Only the ports connected to a same device with the same rate, duplex, and basic configuration can be aggregated.

Instructions for adding a dynamic link aggregation:


1. Click the "Port > Aggregation > LAG Configuration" in the navigation bar, select the LAG ID and LACP mode, "Modify" them as follows:

Edit Link Aggregation Group

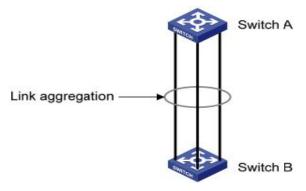
2. Click the "Port > Aggregation > LACP Configuration" in the navigation bar to configure the LACP attributes such as system priority, port priority and timeout method as follows:

Interface data are as follows

Configuration	Description
Items	
Mode	Static mode and LACP mode
	Static mode
	A static link aggregation should be created and the member interfaces
	should be added for better bandwidth and reliability between two

	devices in case LACP is unavailable to one of them.	
	LACP mode	
	Links between two devices are able to backup redundantly in the	
	dynamic LACP mode. Backup links ensure the uninterrupted data	
	transmission by replacing the partially failed links.	
System Priority	LACP determines the active and passive modes between two devices	
	subject to priority standard.	
Port Priority	LACP determines the dynamic LAG member mode subject to the port	
	priority with a superior system.	
Timeout Period	It decides the transmission frequency of LACP messages.	

Description:


Please make sure there is no member interface accessing the Eth-Trunk before changing its work pattern, otherwise it fails.

Work pattern of the local network devices should be consistent with that of the opposite network devices.

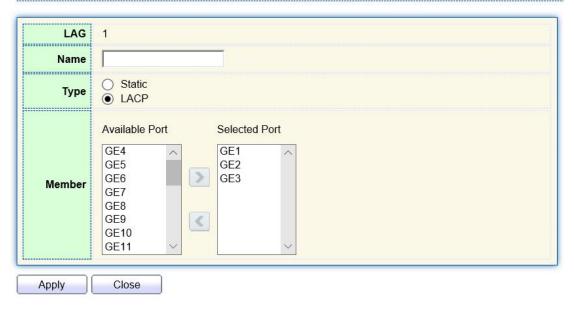
Illustration

Ethernet Switch A aggregates 3 ports from GE1 to GE3 to Switch B, so as to share the load by each member port.

The following configurations are exampled by means of dynamic aggregation.

Instructions:

Description:


The following is the configuration of Switch A only, which should stay the same with that of Switch B for port aggregation.

Instructions:

1. Click the "Port > Aggregation > LAG Configuration" in the navigation bar, "Modify" with LAG 2, select GE1-GE3 in LACP mode. "Apply" and finish as follows:

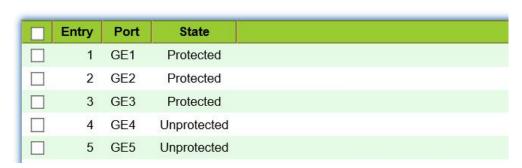
Edit Link Aggregation Group

4.6 Port Isolation

Messages of broadcast, multicast, etc. will flood at each port even though the flow needs no mutual communication sometimes. Under this circumstance, port isolation can separate the messages between two ports.

Instructions:

1. Click the "Port > Port Isolation" in the navigation bar, check the port(s) to be isolated, "Modify" to switch this function as follows:



The following figure illustrates that PC1, 2 and 3 access GE1, 2 and 3 severally, but they are expected to be isolated.

Instructions:

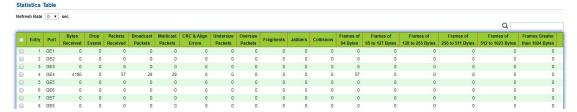
1. Click the "Port > Port Isolation" in the navigation bar, check and "Modify" the GE1, 2 and 3 to be isolated. "Apply" and finish as follows:

Protected Port Table

GE1, 2 and 3 fail to communicate mutually like other non-isolated ports.

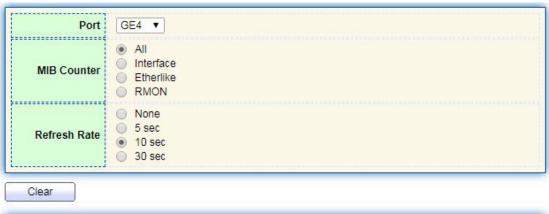
4.7 Port Statistics

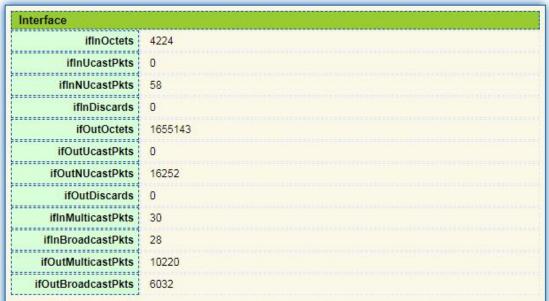
a. Introduce the detailed flow statistics of all ports and that to be refreshed or cleared manually by users.



Note: Cleared flow statistics cannot be restored. Please think twice before operation.

Instructions:


1. Click the "Device Management > RMON Configuration> Message Statistics" in the navigation bar as follows:

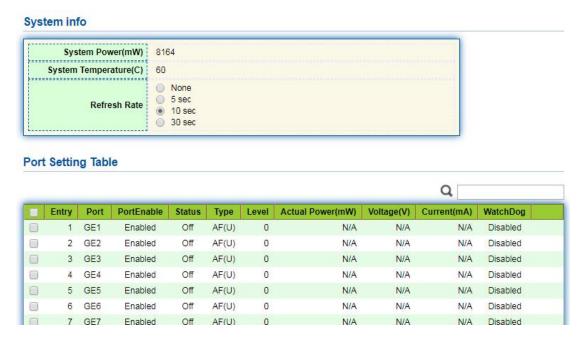


Description:

- "Refresh" to get the updated flow statistics.
- "Clear" to remove the flow statistics at all ports and refresh the page.
- "View" the specified port for detailed flow statistics.
- b. Introduce the detailed flow statistics at a port and the info to be refreshed or cleared manually by users.
- 1. Click the "System State > Port Info> Port Statistics" in the navigation bar as follows:

Description:

"Clear" the flow statistics at the current port and refresh the page.


5 PoE

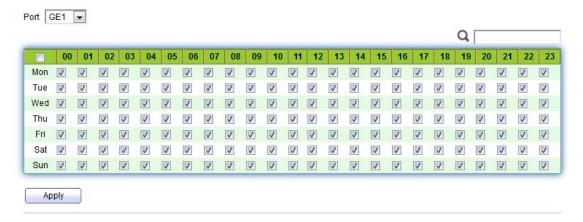
PoE (Power over Ethernet) transmits data signal for the terminals based on IP (e.g. IP phone, WAP, and IP camera) and supplies the devices with direct current, without changing the existing Cat-5 network cabling status. It ensures safe structured cabling and normal network operation to minimize the cost.

5.1 PoE Port Setting

Instructions:

1. Click the "POE Setting > POE Port Setting" in the navigation bar as follows:

2. Select the port(s) to be configured, and "Edit" as follows:

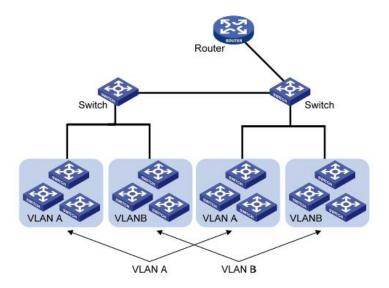

Configuration items are as follows.

Configuration	Description
Items	
PortEnable	Enable/Disable Poe port power
WatchDog	Enable/Disable Poe port watchdog function; After enabling the
	watchdog function, when the POE port is continuously powered but
	there is no traffic, the POE watchdog will be triggered. After 2
	minutes of detection, the power supply will be stopped and then
	powered on. The total detection cycle is 5 times

5.2 POE Port Timer Setting

Instructions:

1. Click the "POE Setting > POE Port Setting", Select the power supply time of Poe schedule. "Apply" and finish as follows:



6 L2 Configuration

6.1 VLAN Configuration

VLAN is formulated not restricted to physical locations, which means the hosts in a same VLAN can be placed at will. As shown below, each VLAN, as a broadcast domain, divides a physical LAN into logical LANs. Hosts can exchange messages by means of traditional communication. For the hosts in different VLANs, the device such as router or L3 switch is a must.

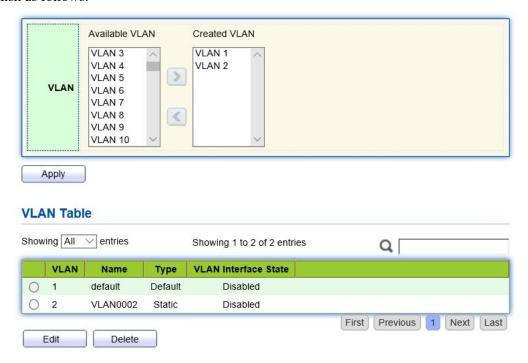
VLAN is superior to the traditional Ethernet in terms of:

Broadcast domain coverage: the broadcast message in a LAN is limited in a VLAN to save the bandwidth and handle the network-related issues more efficiently.

LAN security: VLAN hosts fail to communicate with each other since the messages are separated by the broadcast domain in the data link layer. They need a router or a Layer 3 switch for Layer 3 forwarding.

Flexibility of creating a virtual working team: VLAN can create a virtual working team beyond the control of physical network. Users have access to the network without changing the configuration if their physical locations are moving within the scope.

This management switch is compatible with VLAN types based on 802.1Q, protocols, MAC, and ports. For default configuration, 802.1Q VLAN mode should be adopted.


Port VLAN is divided subject to a switch's interface No. Network administrator gives each switch interface a different PVID, namely a port default VLAN. If a data frame without a VLAN tag flows into a switch interface with a PVID, it will be marked with the same PVID, or it will get rid of an additional tag even though the interface has a PVID.

The solution to a VLAN frame depends on the interface type, which eases member definition but re-configures VLAN in case of member mobility.

a. Instructions for creating a new VLAN:

1. Click the "VLAN Function > VLAN Configuration > VLAN Creating" to select a name in the valid VLAN box, move it to the VLAN creating box on the right (up to 256 VLANs can be created). "Apply" and finish as follows:

2. The VLAN created will be displayed in the VLAN Table. Users can "Modify" the VLAN as follows:

Name VLAN0002 Apply Close

Interface data are as follows.

Configuration	Description
Items	
VLAN ID	It is required to select an ID ranging from 1 to 4,094. For example, 1-3,5,7 and 9. LAN 1 is the default, which won't be repeated in another
	new VLAN.
Name	It is optional to modify the VLAN description as required.

b. Instructions for adding the current port to a specified VLAN

There are two methods. One is to add multiple ports under a single VLAN. The other is to add a port to multiple VLANs. They are configured according to different purposes.

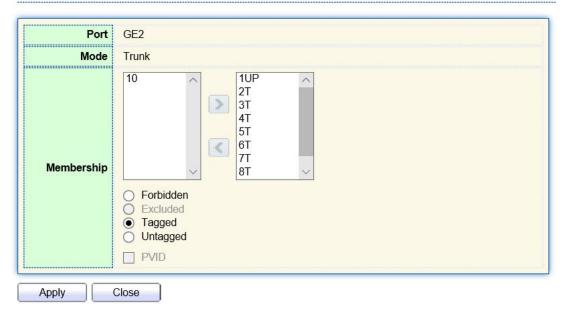
The first method:

1. Click the "VLAN Function > VLAN Configuration > VLAN Setting" in the navigation tree, select the

VLAN ID on the upper left, and then click the port info as follows:

VLAN Configuration Table VLAN default ▼ Q Entry PVID Forbidden Port Mode Membership Untagged GE1 Trunk Excluded Tagged 2 GE2 Trunk Excluded Tagged Untagged Untagged 3 GE3 Trunk Excluded Tagged Tagged Untagged GE4 Trunk Excluded 1 Untagged 5 GE5 Trunk Excluded Tagged 6 GE6 Trunk Excluded Tagged Untagged 1 Excluded Untagged GE7 Trunk Tagged GE8 Excluded Tagged Untagged 8 Trunk

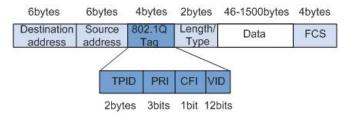
Interface data are as follows.


Configuration Items	Description
VLAN	VLAN ID to be configured
Member	Member roles at the VLAN port:
	Excluded: the port is out of this VLAN
	Tagged: the port is a tagged member of this VLAN
	Untagged: the port is an untagged member of this VLAN
PVID	Whether this VLAN is the port PVID
Forbidden	Whether the VLAN message is forbidden to be forwarded at this
	port

The second method:

1. Click the "VLAN Function > VLAN Configuration > Member Configuration" in the navigation tree, select the port to be configured and "Modify" to configure its attributes:

Edit Port Setting


Interface data are as follows.

Configuration Items	Description
Port	Port No. to be configured
Mode	Modify the current VLAN mode in port configuration:
	Hybrid: port in this mode can serve as the Tagged & Untagged
	members of VLANs.
	Access: port in this mode serves as the only one member of
	VLAN
	Trunk: port in this mode serves as the Untagged member of
	PVID only and the Tagged member of VLANs
Member	The port is the attribute of VLAN ID and VLAN:
	Forbidden: do not forward the VLAN message
	Excluded: the port out of the VLAN
	Tagged: the Tagged member of the VLAN
	Untagged: the Untagged member of the VLAN
	PVID: whether the VLAN is the port PVLAN

c. Introduction to 802.1q

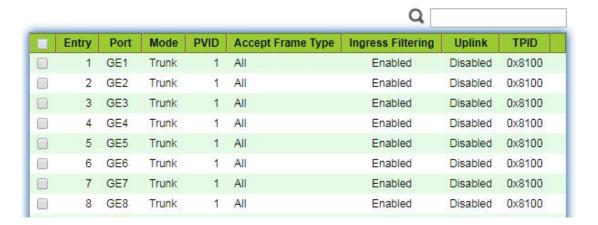
Trunk configuration. Connected with other switches, Trunk interfaces mainly connect trunk links to allow the VLAN frames to flow through. IEEE 802.1q is the encapsulation protocol of Trunk link and considers the formal standard for Virtual Bridged Local Area Networks. It changes the frame format of Ethernet by adding a 4-bit 802.1q Tag between the source MAC address field and the protocol field. 802.1q frame format

Meanings of 802.1q tag fields

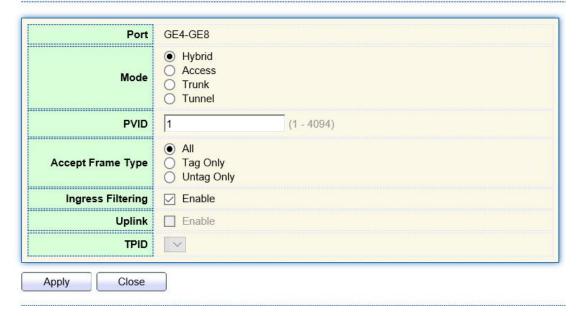
Treatings of 002.14 arg fields			
Field	Length	Name	Analysis
TPID	2 bytes	Tag Protocol Identifier to	It refers to the 802.1q Tag frame
		describe the frame type	when the value is 0x8,100, which
			will be discarded if relevant
			equipment fails to receive it.
PRI	3 bits	Frame Priority	It ranges from 0 to 7, with the
			higher priority represented by
			larger number. Data frame with
			higher priority will be sent
			preferentially in case of switch
			congestion.
CFI	1 bit	Canonical Format Indicator to	MAC address is classical when
		reveal whether the MAC	CFI is 0 and non-classical when
		address is classical or not.	CFI is 1. It promotes the
			compatibility between Ethernet
			and token ring. CFI will be 0 in
			the Ethernet.
VID	12 bits	VLAN ID indicates the VLAN	It ranges from 0 to 4,095, with 1
		to which the frame belongs.	to 4,094 valid since 0 and 4,095
			are the protocol retention values.

Packets sent by each switch supporting 802.1q protocol contain a VLAN ID to indicate the VLAN to which the switch belongs. Therefore, Ethernet frames are divided into two types as follows in a VLAN switching network:

Tagged frame: it refers to the frame adding a 4-bit 802.1q Tag.


Untagged frame: it refers to the original frame without a 4-bit 802.1q Tag.

Connected with other switches, Trunk interfaces mainly connect trunk links to allow the VLAN frames to flow through.


- d. Instructions for trunk interface configuration:
- 2. Click the "VLAN Function > VLAN Configuration > Port Configuration" in the navigation tree, select the port and "Modify" it to configure the attributes:

Port Setting Table

Edit Port Setting

Interface data are as follows.

Configuration Items	Description
Port	Port No. to be configured
Mode	Modify the current VLAN mode in the port configuration:
	Hybrid: port in this mode serves as the member of Tagged
	and Untagged ports of VLANs
	Access: port in this mode serves as the only member of
	VLAN
	Trunk: port in this mode serves as the only Untagged
	member of PVID and the Tagged member of VLANs
PVID	Port PVLAN

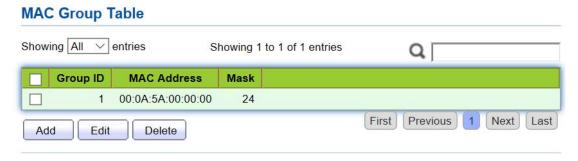
Accept Frame Type	Message types received by ports	
	All: all messages	
	Tag Only: only Tagged messages will be received	
	Untag Only: only Untagged messages will be received	
Ingress Filtering	A switch to decided to filter VLAN messages excluded at	
	the port	
Uplink	Whether in uplink mode or not	
TPID	Identification No. of VLAN Tag	

Illustration

Connection interfaces and 2 VLANs should be added to support the user communication in VLAN 2 and 3 of the links between Switch A and B. That is, VLAN 2 and 3 should be added to the GE1-3 Ethernet Interfaces of Switch A and B.

Instructions:

Create VLAN 2 and 3 in Switch A and B. Add GE1 port connected to user interfaces to VLAN2, with GE2 to VLAN3. Set GE3 in the trunk work pattern and add it to VLAN2 and 3.


6.2 MAC VLAN

MAC-based VLANs are divided subject to the MAC addresses in the network card. Administrators will prepare the mapping scheme between MAC address and VLAN ID which will be added if the switch receives untagged frames.

Strength: There is no need to re-configure VLAN when the physical location of a terminal user changes, which ensures user security and access flexibility. Shortcoming: It applies to the scene where network card and simple network environment are infrequently replaced, with members defined in advance.

Instructions:

1. Click the "VLAN Function > MAC VLAN Configuration > MAC Group Configuration" in the navigation tree, and "Add" a new MAC group as follows:

Add MAC Group

Group ID	2	(1 - 2147483647)
IAC Address	00:22:00:22:00:22	
Mask	48	× (9 - 48)

Interface data are as follows.

Configuration Items	Description	
Group ID	MAC VLAN Group ID	
MAC Address	The MAC address to be bound with VLAN	
Mask	It indicates the MAC address port. Enter 48 if it is an exact match.	
	Others should be consistent with the masks of IP addresses.	

For example, a company with high info security requirements allows its PCs only to access the internal network. As is shown, switch GE1 connects the uplink ports of Switch A while its downstream ports connect PC1, 2 and 3. As a result, PC1, 2 and 3 can access the internal network through Switch A and Switch, while other PCs can't.

Configuration logic: following steps are used to divide the VLAN based on MAC address.

- 2. Create a relevant VLAN.
- 3. Add Ethernet interfaces to the VLAN in a correct way.
- 4. Connect the VLAN with the MAC addresses of PC1, 2 and 3.

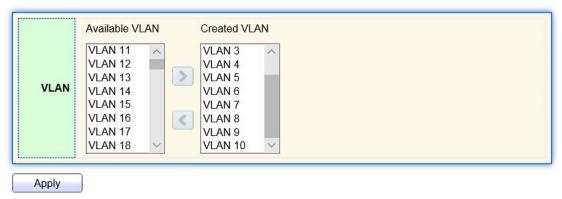
Data preparation: following data should be prepared for the configuration instance:

Set GE1 PVID of 100 on the switch.

Set GE1 to access VLAN10 in the Untagged way on the switch.

Set GE2 to access VLAN10 in the Tagged way on the switch.

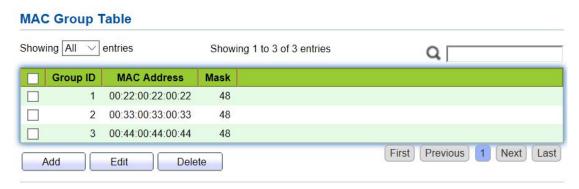
Set the Switch A interface by default, namely all interfaces will be added to VLAN1 in an Untagged way.


Connect the MAC addresses of PC1, 2 and 3 with VLAN10.

Draw a networking diagram for VLAN division based on MAC addresses:

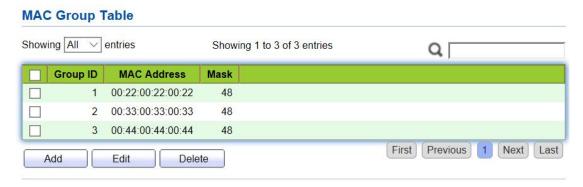
Instructions:

1. Create a VLAN to recognize the VLANs where employees belong. Click the "VLAN Function > VLAN Configuration > VLAN Creating" in the navigation tree, add VLAN10 to the VLAN Creating List on the right, "Apply" and finish as follows:



2. Configure Switch's GE1 in Hybrid mode with PVID of 100 to serve as an Untagged member of VLAN10. Configure GE2 in Trunk mode to serve as a Tagged member of VLAN10.

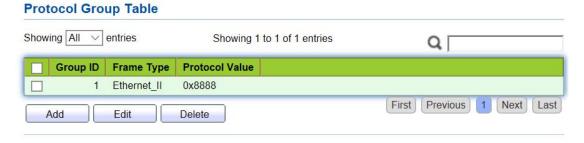
Port Setting Table Q Entry Port Mode **PVID Accept Frame Type Ingress Filtering** Uplink **TPID** All 1 GE1 Hybrid 100 Enabled Disabled 0x8100 2 GE2 Trunk All Enabled Disabled 0x8100 1 Membership Table Q **Operational VLAN** Entry Port Mode Administrative VLAN 1U, 10U, 100P 0 GE1 Hybrid 1U, 10U, 100P 2 GE2 Trunk 1UP, 10T 1UP, 10T 0 3 GE3 Trunk 1UP 1UP 0


3. Configure the Switch A's interfaces by default, namely all interfaces access VLAN1 in an Untagged way. Connect the MAC addresses of PC1, 2 and 3 with VLAN10. Click the "VLAN Function > MAC VLAN Configuration > MAC Group Configuration" in the navigation tree, enter the MAC addresses of PC1 (0022-0022-0022), PC2 (0033-0033-0033) and PC3 (0044-0044-0044), with the mask of 48-bit exact match as follows:

4. Click the "VLAN Function > MAC VLAN Configuration > MAC Group Binding" in the navigation tree, "Add" to select the Hybrid port only, MAC group ID to be bound, and specified VLAN ID. "Apply" and finish:

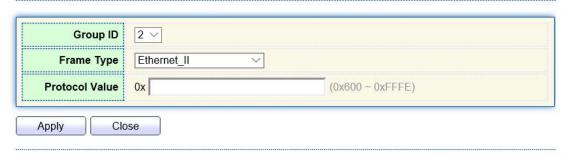
5. Configuration verification

Only PC1, 2 and 3 have access to the internal network.


6.3 Protocol VLAN

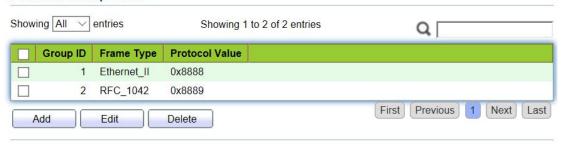
Protocol-based VLAN distributes different VLAN IDs according to the protocol (family) type and encapsulation format of the messages received by the interfaces.

Administrators should prepare the mapping scheme between the protocol domain of Ethernet frame and VLAN ID which will be added if untagged frames are received. Strength: Such division method will enhance the management and maintenance by binding the network services and VLANs. Shortcomings: Initial configuration of the mapping relation scheme is necessary. Address formats of protocols should be analyzed and converted, thus leading to a lower speed due to a large number of resources consumed.


Instructions:

1. Click the "VLAN Function > Protocol VLAN Configuration > Protocol Group Configuration" in the navigation tree as follows:

Add Protocol Group

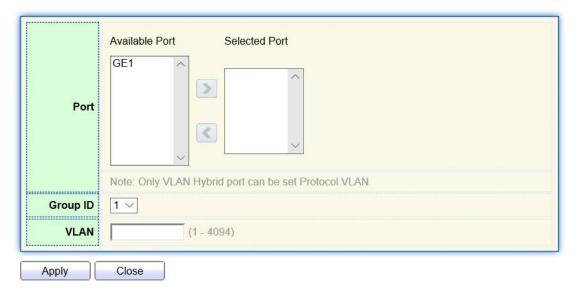


Interface data are as follows.

Configurati	Description
on Items	
Group ID	Protocol VLAN Group
Message	Frame types: Ether2, LLC, RFC 1042
Type	
Protocol	It ranges from 0x600 to 0xFFFE
Value	

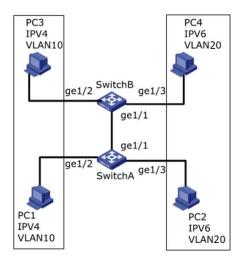
- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

Protocol Group Table


4. Click the "VLAN Function > Protocol VLAN Configuration > Protocol Group Binding" in the navigation tree to bind the protocol No., port No. and VLAN ID, to bring the configuration into effect as follows:

Group Binding Table

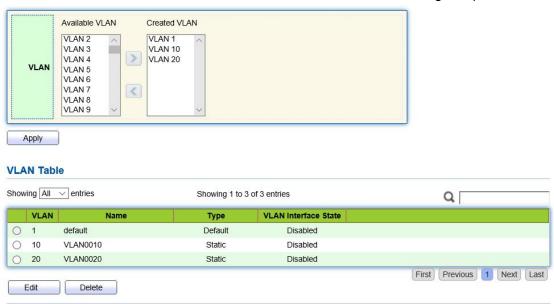
Add Group Binding



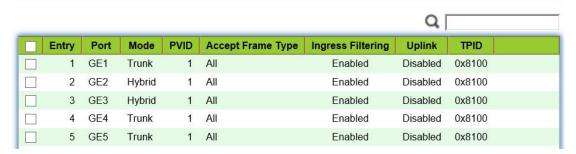
Description:

Configure the matching protocols IPv4 and IPv6, as well as the ARP protocol.

For example, PC1 and 3 can access mutually, with IPv4 communication protocol binding with VLAN10. PC2 and 4 can access mutually, with IPv6 communication protocol binding with VLAN20.


Networking diagram of protocol VLAN division

Instructions:


1. Create a VLAN to recognize the VLANs where employees belong. Click the "VLAN Function > VLAN Configuration > VLAN Creating", add the VLAN10 and 20 to the VLAN Creating List on the right, "Apply" and finish:

2. Configure GE2 and GE3 interfaces of Switch A in Hybrid mode. Click the "VLAN Function > VLAN Configuration", "Modify" the interfaces in Hybrid mode:

Port Setting Table

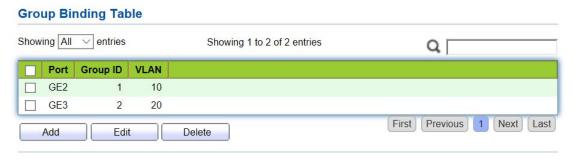
3. Add the Untagged GE2 and GE3 to VLAN10 and VLAN20 respectively. Click the "VLAN Function > VLAN Configuration > VLAN Setting", drop down the list to choose VLAN10 and the Untagged GE2 port. Following the same steps, add the untagged GE3 to VLAN20 as follows:

VLAN Configuration Table

VLAN Configuration Table

- 4. Add the Untagged GE2 and GE3 interfaces of Switch B to VLAN whose ports need links. Steps are similar to 2 and 3.
- 5. Add the Tagged GE1 interface of Switch A to VLAN10 and 20. Click the "VLAN Function > VLAN Configuration > VLAN Setting", drop down the list to select VLAN10 and the Tagged member of GE1. Configure VLAN20 similarly.

VLAN Configuration Table VLAN VLAN0010 V Q Forbidden **PVID** Entry Port Mode Membership GE1 O Excluded ● Tagged Untagged Trunk **VLAN Configuration Table** VLAN VLAN0020 V Q Forbidden Entry Port Mode Membership **PVID** GE1 Trunk O Excluded Tagged O Untagged


6. Related protocol and VLAN. VLAN IDs are assigned according to the protocol (family) type and encapsulation format of the messages received by interfaces. Click the "VLAN Function > Protocol VLAN Configuration > Protocol Group Configuration" in the navigation tree to add 2 rules for protocol groups:

7. Port, protocol group, and VLAN binding. Click the "VLAN Function > Protocol VLAN Group >

Protocol Group Binding", "Add" to bind GE2 and binding group ID1 with VLAN10, and to bind GE3 and binding group ID2 with VLAN20:

6.4 Voice VLAN

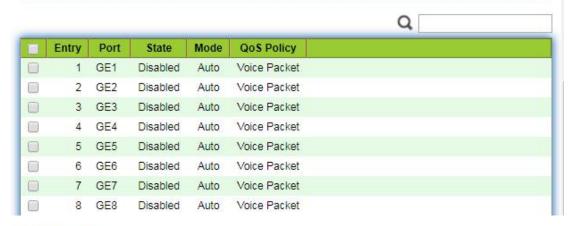
Traditionally, ACL (Access Control List) will be applied to distinguish Voice Data and QoS (Quality of Service) will be used to ensure transmission quality, thus enhancing the priority. In order to simplify user configuration and facilitate voice flow management, Voice VLAN emerges. Enabled interface judges whether it is Voice Data flow or not according to the source MAC address field accessing the interface data flow. The message in the source MAC address is the Voice Data flow, which confirms to the OUI (Organizationally Unique Identifier) of the voice devices that are configured by the system. The interfaces receiving Voice Data flow will automatically transmit to Voice VLAN, thus simplifying user configuration and Voice Data management.

OUI of Voice VLAN

OUI represents a MAC address field. Its address can be calculated based on the 48-bit MAC address and the corresponding bit of mask. The number of bits of ingress MAC address and matching OUI is determined by the length of the all-"1" -bit in the mask. For example, if the MAC address is 1-1-1 and the mask is FFFF-FF00–0000, the result of execution and calculation of MAC address and corresponding mask, namely OUI, will be 0001–0000–0000.

As long as the first 24 bits of the ingress MAC address are matched with those of OUI, the enabled Voice VLAN interface identifies the data flow and the ingress device as the Voice Data flow and voice device respectively.

Voice VLAN is divided for user Voice Data flow. Voice VLANs are created to connect the interfaces linked with voice devices to transmit the Voice Data inside in a centralized way.


Voice Data and non-Voice Data often exist in the same network. Voice Data needs a higher priority than other business data during transmission to reduce the possible delay and packet loss.

1. Click the "VLAN Function > Voice VLAN > Function Configuration" in the navigation tree as follows.

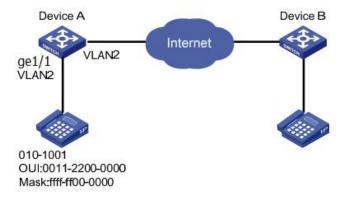
Port Setting Table

Edit Port Setting

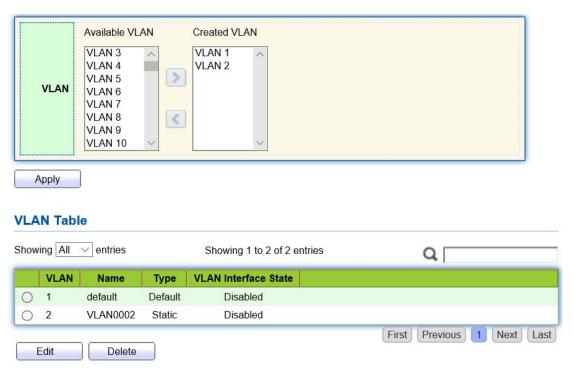
Configuration	Description	
Items		
State	Check and enable the Voice VLAN	
VLAN	Specify the VLAN ID added ranging from 1 to 4,094, e.g. 1-3, 5, 7 and 9,	
	with VLAN 1 by default. Other VLANs must be added in an untagged	
	way to the port needing links.	
CoS Remark	Whether to redefine the Voice VLAN message priority or not	
Aging Time	Table aging time	
Port	Enabled Voice VLAN port	
Mode	Voice VLAN port can be operated in auto mode and manual mode.	
QoS Strategy	Select the message to be affected by QoS	

2. Click the "VLAN Function > Voice VLAN > Voice OUI Configuration" in the navigation tree to configure the address segment of OUI of Voice VLAN as follows:

Voice OUI Table Showing All ventries Showing 1 to 8 of 8 entries Q Description OUI 3COM 00:E0:BB 00:03:6B Cisco 00:E0:75 Veritel 00:D0:1E Pingtel 00:01:E3 Siemens NEC/Philips 00:60:B9 00:0F:E2 H₃C 00:09:6E Avaya First Previous 1 Next Last Add Edit Delete Add Voice OUI OUI Description Apply Close


- 3. Fill in corresponding configuration items.
- 4. "Apply" and finish as follows.

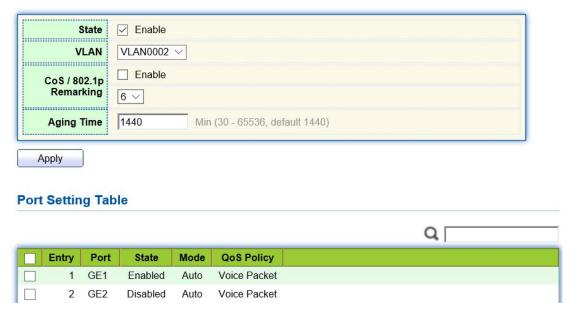
Voice OUI Table


For example, configure the Voice VLAN in manual mode so that the ports accessing IP telephony can ingress/egress the Voice VLAN and transmit voice flow within it. Create VLAN2 to operate Voice VLAN securely, which allows only Voice Data to flow through. IP telephony transmits Untagged voice flow to GE1, the ingress Trunk port. Users have to customize an OUI (0011-22 31-05e1) and configure the Voice VLAN networking diagram in automatic mode.

Instructions:

1. Create a VLAN to recognize the VLANs where employees belong. Click the "VLAN Function > VLAN Configuration > VLAN Creating" in the navigation tree to add VLAN2 to the VLAN list on the right. "Apply" and finish:

2. Configure the Ethernet interface GE1 of Switch A in Trunk mode. Click the "VLAN Function > VLAN Configuration > Port Configuration" in the navigation tree, "Modify" GE1 in Trunk mode:


Port Setting Table Q Entry Port Mode PVID Accept Frame Type Ingress Filtering Uplink TPID 1 GE1 Trunk 1 All Enabled Disabled 0x8100

3. Click the "VLAN Function > Voice VLAN > Voice OUI Configuration" in the navigation tree to configure and add the range of OUI MAC address, and enter the first 24 bits of MAC address of voice device: 00:11:22. "Apply" and finish as follows:

4. Enable the Voice VLAN of port GE1. Click the "VLAN Function > Voice VLAN > Function Configuration" in the navigation tree to enable the global configuration, select VLAN2. Select port GE1 in the configuration list, "Modify" and enable the auto mode. "Apply" and finish as follows:

Note: With the auto mode enabled, ports will forward Voice VLAN messages even though there is no port in VLAN2.

6.5 MAC Configuration

Ethernet switches are mainly innovated to forward according to the purposes in the data link layer. That is, MAC address will transmit the messages to corresponding ports according to the purposes. MAC address forwarding table is a L2 table illustrating MAC addresses and forwarding ports, which is the basis of fast forwarding of L2 messages.

MAC address forwarding table contains following data:

- Destination MAC Address
- VLAN ID belonging to port
- Forwarding ingress No. of this device

There are two message forwarding types according to MAC address table info:

- Unicast mode: the switch directly transmits the messages from the table's egress when MAC address forwarding table contains corresponding entries with the destination MAC address.
- Broadcast mode: When the switch receives the messages with the destination address full of F-bits, or there is no entry corresponding to the MAC destination address in the forwarding table, the switch will forward the messages to all ports excluding the receiving port in this way.

6.5.1 MAC Configuration

Aging time and table info of MAC addresses can be configured and checked on this page.

MAC address table needs constant updates to cater to network changes. It automatically generates entries that are limited by their lifetime (i.e. aging time). Those entries not refreshed after expiration will be deleted. The aging time of an entry will be recalculated if its record is refreshed before expiration.

Proper aging time helps to achieve the aging target of MAC address. Shortage of aging time may lead a large number of switches broadcast to discover the packets of destination MAC addresses, thus influencing the switch performance.

Aging too long can cause the switch to save outdated MAC address entries, thus exhausting the forwarding resources and failing to update the forwarding table based on network changes.

The switch may remove valid MAC address table entries due to too short aging time, thus reducing forwarding efficiency.

Generally speaking, the aging time recommended is 300 seconds by default.

Instructions for aging time setting:

1. Click the "MAC Address Table > Dynamic MAC Address Table" in the navigation tree to the configuration and display interface:

Interface data are as follows

Configuration Items	Description
MAC Aging Time	Enter the aging time of MAC address

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

MAC Table stores the MAC address, VLAN No., Ingress/Egress info, etc. that are learned by switches. When forwarding data, it will fast locate the device egress in accordance with the destination MAC address and VLAN No. query table of Ethernet frames.

Check the instructions for MAC address table:

4. Click the "System State > MAC Address Table" to check all MAC address info as follows:

MAC Address Table

Interface data are as follows.

Query	Description
Items	
MAC	Destination MAC Address
VLAN	VLAN ID belonging to MAC address
Port	Message egress corresponding to MAC address
Туре	Dynamic MAC Address refers to the entry which will age with the set aging time. Switches can add entries based on the learning mechanism of MAC address or manual creation. Static MAC address refers to the specified table which is manually configured and won't age. Management MAC address refers to the address at the management port.

6.5.2 Static MAC

Static table is manually configured by users and distributed to each interface board, which won't age. Steps of establishing a static MAC address

1. Click the "MAC Address Table" as follows:

Showing All ventries Showing 1 to 1 of 1 entries VLAN MAC Address Port 1 00:00:11:11:22:22 GE3 Add Edit Delete First Previous 1 Next Last

Add Static Address

MAC Address	00:00:11:11:22:22		
VLAN	10	× (1 - 4094)	
Port	GE1 V		

Interface data are as follows.

Configurati	Description
on Items	
MAC	Required. Enter the new MAC address e.g.: HH:HH:HH:HH:HH
VLAN	Required. Specify the VLAN ID
Port	Required. Select the interface type and enter the interface name
	Description: it must be the member port of the configured VLANs.

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

6.6 MSTP Configuration

Redundant links are often used for link backup and network reliability in the Ethernet switching network. However, such links will generate loops on the switching network, leading to broadcast storm, unstable MAC address list and other faults, thus worsening users' communication quality, or even interrupting the communication. As a result, STP (Spanning Tree Protocol) appears.

Same with the development of other protocols, from the original STP defined in IEEE 802.1D, to RSTP (Rapid Spanning Tree Protocol) defined in IEEE 802.1W and to MSTP (Multiple Spanning Tree Protocol) defined in IEEE 802.1S, STP keeps upgrading.

MSTP is compatible with RSTP and STP while RSTP is compatible with STP. The contrast among these 3 protocols is shown in the table.

The contrast among 3 protocols

STP	Characteristic	Application
STP	A tree rid of loops as the	All VLANs can be shared
	solution to broadcast storms and	without discrimination in user or
	redundant backups.	business flow.
	It converges slowly.	
RSTP	A tree rid of loops as the	
	solution to broadcast storms and	

	redundant backups.	
	It converges rapidly.	
MSTP	A tree rid of loops as the	Distinguish the user and
	solution to broadcast storms and	business flow for load sharing.
	redundant backups.	Different VLANs forward the
	It converges rapidly.	flow through separate spanning
	Spanning trees balance the load	trees.
	among VLANs. Flow of	
	different VLANs will be	
	forwarded subject to paths.	

After STP is deployed, the following objectives can be achieved by calculating the loops with topology:

- Loop elimination: eliminate possible communication loops by blocking redundant links.
- Link backups: activate redundant links to restore network connectivity if the active path fails.

6.6.1 Global Configuration

Configure STP global parameters. In specific network environment, STP parameters of some devices have to be adjusted to achieve the best performance.

Instructions:

1. Click the "STP > Function Configuration" in the navigation tree as follows:

State	Enable	
Operation Mode	O STP O RSTP O MSTP	
Path Cost	Long Short	
BPDU Handling	FilteringFlooding	
Priority	32768	(0 - 61440, default 32768)
Hello Time	2	Sec (1 - 10, default 2)
Max Age	20	Sec (6 - 40, default 20)
Forward Delay	15	Sec (4 - 30, default 15)
Tx Hold Count	6	(1 - 10, default 6)
Region Name	1C:2A:A3:00:00:24	
Revision	0	(0 - 65535, default 0)
Мах Нор	20	(1 - 40, default 20)
Operational Status		
Bridge Identifiter	32768-1C:2A:A3:00:00:2	24
Designated Root Bridge	0-00:00:00:00:00:00	
Root Port	N/A	
Root Path Cost	0	
	0	
Topology Change Count	0	

Interface data are as follows.

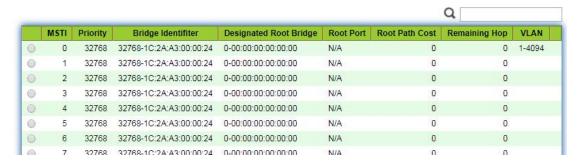
Configuration Items	Description
Enabled	It is checked by default to enable the spanning tree on behalf of switches.
Running Mode	3 modes are available, namely STP, RSTP and MSTP.
Path Cost Mode	In Long mode and Short mode
BPDU Forwarding Method	The method to handle the BPDU messages received by the device
Priority	Port priority
Hello Time	Intervals between Hello messages
Max Age	Max aging time
Forward Delay	Forward delay time
Domain Name	MST domain name. Switch master board sets the MAC address by default.

Together with the VLAN mapping table of MST domain and the
revision level of MSTP, switch domain name will jointly determine
the domain to which it belongs.

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

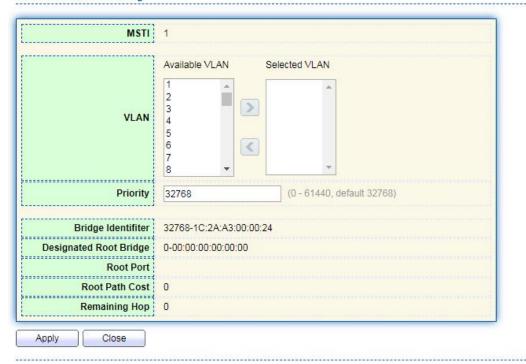
6.6.2 Instance Configuration

A switching network is divided into multiple domains by MSTP, with independent spanning trees formed within each domain. Each Spanning Tree is called a MSTI (Multiple Spanning Tree Instance), and each domain is called a MST Region: Multiple Spanning Tree Region).


Description:

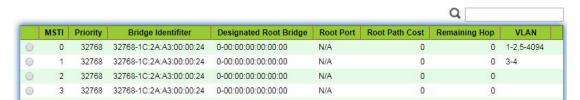
An instance is a group of VLANs that reduces communication cost and resource utilization rate. Each instance, independently calculated with topology, can balance the load. VLANs with the same topology can be mapped to a same instance, and they are forwarded according to the port state in corresponding MSTP instances. In simple terms, mapped to the specified MST instance, one or more VLANs are distributed to a spanning tree at a time.

Instructions:


1. Click the "STP > Instance Configuration" in the navigation tree, "Modify" the selected spanning tree instances to be configured as follows:

MST Instance Table

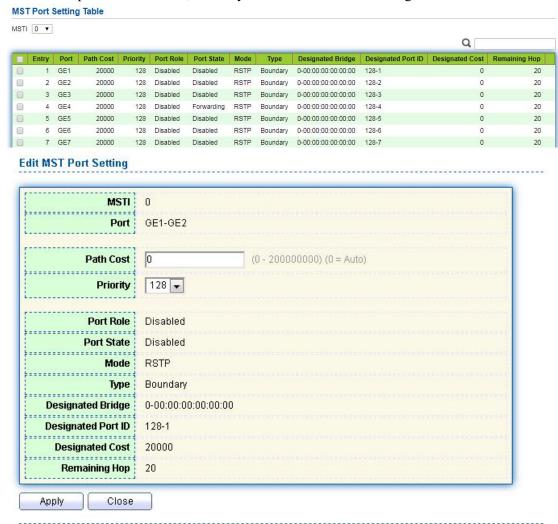
Edit MST Instance Setting



Interface data are as follows.

Configuration	Description
Items	
MSTI	Instance No. of spanning trees ranges from 0 to 15
VLAN	VLAN No. mapped from instances
Priority	Set the priority of a multiple of 4,096 for the specified instance, ranging
	from 0 to 65,535 with 32,768 as default.
Bridge ID	The bridge ID of the spanning tree instance corresponding to this device
	consists of the priority and MAC address.
Root Bridge	The elected instance root bridge ID consists of the priority and MAC
ID	address.
Root Port	The elected instance root port ID
Root Cost	Path cost to the root bridge

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish as follows.


MST Instance Table

6.6.3 Instance Port Configuration

1. Click the "STP > Instance Port Configuration" in the navigation tree, check the port to be modified from the list of all ports of the device, "Modify" to enter the detailed configuration interface as follows:

Interface data are as follows.

Configuration	Description
Items	
MSTI	Select the instance for configuration through the drop-down box in the
	upper left.
Port	Select the port to be configured by users
Path Cost	Enter the path cost value of the interface Use IEEE 802.1t Standard with
	the value ranging from 0 to 200,000,000
Priority	Select the port priority with smaller value representing higher priority.
	Interface priority affects the role of the interface on the specified MSTI.


	On different MSTI, users can configure the priorities for a same
	interface. As a result, flow of different VLANs can be forwarded along
	physical links to achieve VLAN load sharing.
	Description: MSTP will recalculate the interface role and migrate its state
	when its priority changes.
Port Role	3 types of root ports, namely specified port, backup port and disabled
	port.
Port State	Including 3 states, namely Discarding, Forwarding and Disabled
Mode	Current STP mode
Туре	The port types in the instance contain boundary and internal ports

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

6.6.4 Port Configuration

In specific network environment, STP parameters of some devices need to be adjusted for the best performance.

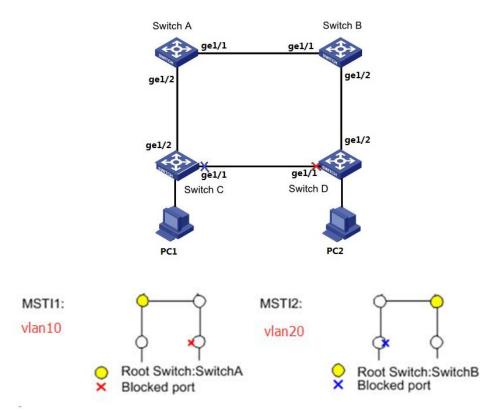
1. Click the "STP Function > Port Configuration" in the navigation tree, select the port and "Modify" to configure its attributes:

Edit Port Setting

Port	GE1
State	▼ Enable
Path Cost	0 (0 - 200000000) (0 = Auto)
Priority	128 💌
Edge Port	Enable
BPDU Filter	Enable
BPDU Guard	Enable
Point-to-Point	Auto Enable Disable
Port State	Disabled
Designated Bridge	0-00:00:00:00:00
Designated Port ID	128-1
Designated Cost	20000
Operational Edge	False
Operational Point-to-Point	False
Apply Close	

Interface data are as follows.

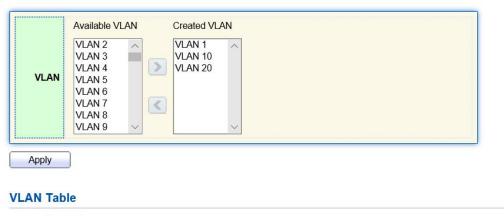
Configuration	Description
Items	
Port	The port No. to configure attributes
State	Enable STP or not
Edge Port	Rather than another switch or network segment, the edge port should be connected directly to user terminals. It can quickly transit to the forward state since topology changes create no loops. An edge port under configuration can be quickly transitioned to forward state by STP. To achieve this, it is recommended that Ethernet ports connected directly to user terminals should be configured as edge ports.
BPDU Filter	Enable BPDU Filter or not
BPDU Guard	Enable BPDU Guard or not. Unchecked by default. If BPDU Guard is enabled, the device will shut down the interfaces receiving BPDU and notify the NMS. Such interfaces can only be restored manually by network administrators.

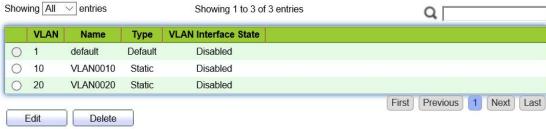


Point-to-Point	Select enabled, shutdown, and auto modes.
	Auto mode: it indicates the connect state between the default auto
	inspection and point-to-point links.
	Enabled mode: it indicates the specific port is connected to the
	point-to-point links.
	Shutdown mode: it indicates the specific port fails to connect the
	point-to-point links.

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

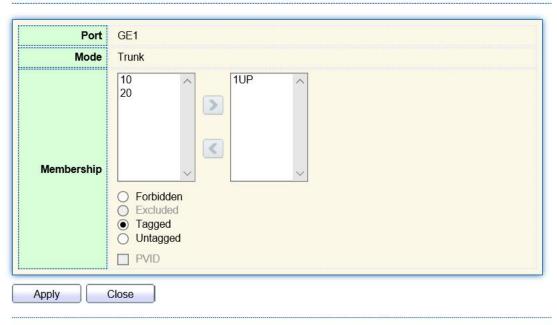
Example of MSTP function configuration:


Switch A, B, C and D all run MSTP which introduces instances to share the load of VLAN10 and 20. MSTP can set up the VLAN mapping table to associate VLANs with spanning tree instances, and to map VLAN10 from instance 1 and VLAN20 from instance 2.



Instructions:

1. Switch A, B, C and D create VLAN10 and 20 to configure the L2 forwarding function of the devices on the Ring. Click the "VLAN Function > VLAN Configuration > VLAN Creating" in the navigation tree, fill in the corresponding configurations. "Apply" and finish as follows.



2. VLANs are added to the switch ports ingress loops. Click the "VLAN Function > VLAN Configuration > Member Configuration" in the navigation tree, select the ring port to be configured, move VLAN10 and 20 to the right box and mark them with "Tagged". "Apply" and finish:

Edit Port Setting

3. Click the "STP > Function Configuration" in the navigation tree, and choose MSTP mode as follows:

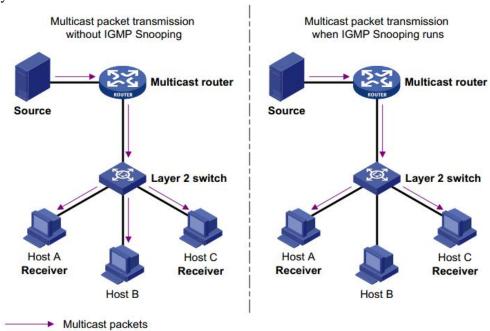
4. Configure the VLAN mapping between instance MSTI1 and MSTI2. Click the "STP > Instance Configuration" to fill in corresponding parameters, and "Add" them as follows:

Set the priority of MSTI1 to 0 and MSTI2 to 4,096 before configuring Switch A.

Set the priority of MSTI1 to 4,096 and MSTI2 to 0 before configuring Switch B.

The priority must be a multiple of 4,096.

5. Switch B serves as the root bridge of MSTI2 and the backup root bridge of MSTI1 in the domain. Please refer to 5 for instructions.


6. The tree-shaped network will eliminate loops.

6.7 IGMP Snooping Configuration

IGMP Snooping (Internet Group Management Protocol Snooping) is a constraint mechanism on L2 devices to manage and control multicast groups.

By analyzing the IGMP messages received, L2 devices establish a mapping between ports and MAC multicast addresses and forward the multicast data accordingly.

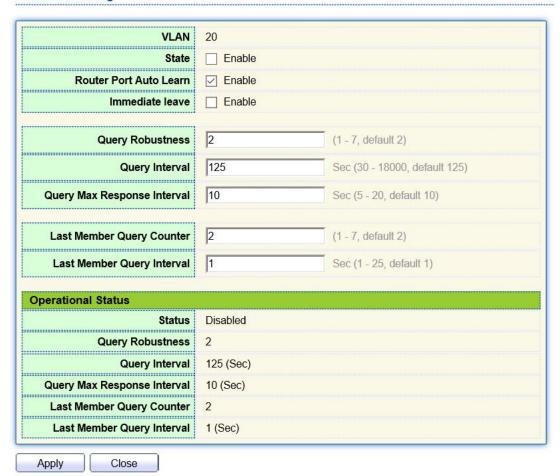
As shown below, multicast data are transmitted on L2 without IGMP snooping. When IGMP snooping runs, known multicast group data are transmitted to specified receivers while unknown multicast data are still on Layer 2.

6.7.1 IGMP Snooping Configuration

IGMP Snooping is on the L2 switch between the multicast routers and the user hosts, applicable to deploy IPv4 networks. It is configured in a VLAN to snoop the IGMP/MLD messages transmitted between routers and hosts, and to establish a L2 forwarding table for multicast data, so as to manage and control the multicast data forwarding in L2 network.

Global IGMP Snooping function should be enabled since it is disabled by default. Instructions:

1. Click the "Multicast > IGMP Snooping > Function Configuration", select the VLAN to be configured from the created VLAN info, and "Modify" the details as follows:



VLAN Setting Table

J	VLAN	Operational Status	Router Port Auto Learn	Query Robustness	Query Interval	Query Max Response Interval	Last Member Query Counter	Last Member Query Interval	Immediate Leave
_	1	Disabled	Enabled	2	125	10	2	1	Disabled
	10	Disabled	Enabled	2	125	10	2	1	Disabled
	20	Disabled	Enabled	2	125	10	2	1	Disabled

Edit VLAN Setting

Interface data are as follows.

Configuration Items	Description
VLAN	VLAN ID to be configured
State	Enable or disable the IGMP Snooping in this VLAN

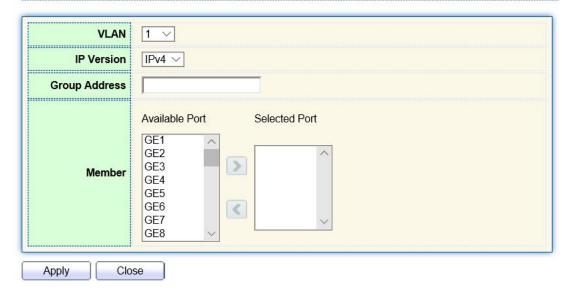
77

Routed Port Learning	
Fast Leave	
Number of Query	Max number of multicast queries
Query Interval	The interval between message queries
Max Response Time	Timeout (over the max response time) of a query message
of Queries	
Number of Queries	Max number of queries for a specified group
for a Specified Group	
Query Intervals for a	The interval between message queries for a specified group
Specified Group	

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish.

6.7.2 Static Multicast

According to the previous request mode of multicast, the multicast router will copy and forward data to each VLAN containing receivers when users in different VLANs request the same multicast group, which wastes a great deal of bandwidth. IGMP Snooping configures multicast VLAN by connecting the different users of switch ports to a same multicast VLAN to receive multicast data. In this way, multicast flow can only be transmitted within a multicast VLAN, thus saving bandwidth. In addition, security and bandwidth are guaranteed because multicast VLANs are completely isolated from user VLANs.


Instructions

1. Click the "Multicast > Basic Function > Static Multicast Configuration", "Add" a new static multicast item, and "Modify" the existing ones as follows:

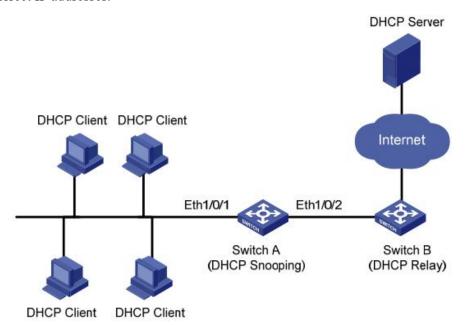
Add Group Address

Interface data are as follows.

Configuration Items	Description	
VLAN	VLAN ID to which the multicast group belongs. Drop down to	
	select an existing VLAN.	
IP Version	Whether v4 or v6 is the version of multicast IP address	
Multicast Address Enter the multicast address		
Member	Add multicast member(s)	

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish as follows.

6.8 DHCP Snooping Configuration



For sake of security, the network administrator may need to record the IP address of a user surfing the Internet and to confirm the correspondence between the IP address obtained from DHCP Server and the host's MAC address.

Switch can record the user's IP address through the secure DHCP relay at the network layer.

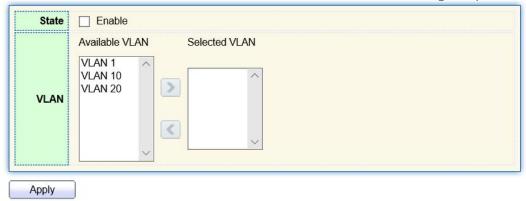
Switch can monitor DHCP messages and record the user's IP address through DHCP Snooping at the data link layer. In addition, private DHCP Server in the network may lead to wrong IP address for the user. To ensure that users obtain IP addresses through legal DHCP Server, the DHCP Snooping security mechanism divides the ports into Trust Port and Untrust Port.

Trust Port directly or indirectly connects legal DHCP Server. It forwards the DHCP messages received to ensure the correct IP address for DHCP Client. Untrust Port connects illegal DHCP Server. DHCPACK and DHCPOFFER messages received from the DHCP Server on the Untrust Port will be discarded to prevent incorrect IP addresses.

Typical Networking of DHCP Snooping

The following methods are used to obtain the IP address and user MAC address from DHCP Server:

- Snooping the DHCPREQUEST message
- Snooping the DHCPACK message


6.8.1 DHCP Snooping Global Configuration

Enable DHCP Snooping

Instructions:

1. Click the "Security > DHCP Snooping > Function Configuration". DHCP Snooping interface is divided into global configuration and port configuration. Select the port to be modified in the port configuration and "Modify" the details as follows:

Port Setting Table

Edit Port Setting

Interface data are as follows.

Configuration Items	Description
State	Enable and disable the DHCP Snooping
VLAN	Valid VLAN No. of DHCP Snooping
Port	Configure the port No. of DHCP Snooping
Trust	Whether the port is a Trust Port
Client Address	Whether the consistency inspection for Client addresses is
Inspection	enabled
Rate Limit	Whether the port enables rate limit and configures the value

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish as follows.

6.8.2 Static Binding

In DHCP network, users (non-DHCP users) obtaining IP addresses statically may attack the network by imitating DHCP Server, constructing DHCP Request message, etc. Legal DHCP users may suffer from security risks when using the network normally.

Enabling the static MAC entries based on the interface generated by DHCP Snooping binding table can prevent such attacks. The device then, based on the DHCP Snooping binding table corresponding to all DHCP users, automatically executes the command to generate static MAC entries and disable the interface's learning ability of dynamic entries. Only messages that match the source MAC and static MAC entries can flow through the interface. Therefore, for non-DHCP users, only the messages of static MAC entries that are manually configured by the administrators can flow through, while others will be discarded.

Instructions:

1. Click the "Security > IP Source Guard > IMPV Binding", "Add" a new binding group of IP-MAC-Port-VLAN as follows:

IP-MAC-Port-VLAN Binding Table Showing All V entries Showing 0 to 0 of 0 entries Q [VLAN **MAC Address** IP Address Binding Type Lease Time 0 results found Next First Previous Add Edit Delete

Add IP-MAC-Port-VLAN Binding

VLAN		(1 - 4094)
Binding	IP-MAC-Port-VLAN IP-Port-VLAN	
MAC Address	ĺ	
IP Address		1 255.255.255.255

Interface data are as follows.

Configuration	Description
Items	
Port	The port No. of binding group
VLAN	VLAN ID bound
Binding	Select the binding relation from IPMV and IPV
MAC Address	MAC address bound
IP Address	IP address bound

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish as follows.

6.8.3 DHCP Snooping Port Configuration

Private DHCP Servers in the network may lead to wrong IP addresses obtained by users. DHCP Snooping security mechanism based on PS7024 Ethernet switch divides the ports into Trust Port and Untrust Port in order to provide the IP addresses through legal DHCP Servers.

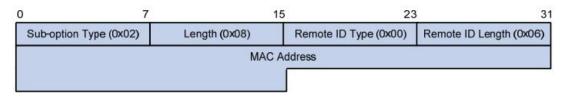
- Trust Port directly or indirectly connects legal DHCP Server. It ensures the correct IP address for DHCP Client by forwarding the DHCP messages received.
- Untrust Port connects illegal DHCP servers. DHCP ACK and DHCPOFFER messages responded by

DHCP Server on untrusted ports will be discarded to prevent incorrect IP addresses.

Option 82 is the Relay Agent Information Option in DHCP messages, which records the location of DHCP Client. When the DHCP relay (or DHCP Snooping device) receives the Request message sent from DHCP Client to DHCP Server, administrators can add the Option 82 to locate the DHCP Client and control the security, cost, etc. More flexible approaches to address allocation are created by the servers supporting Option 82 in line with the IP addresses and other parameters allocation policies.

Up to 255 sub-options are contained in the Option 82. At least one sub-option should be defined if Option 82 is defined. The current device supports 2 sub-options: Circuit ID Sub-option and Remote ID Sub-option

Manufacturers usually fill options as needed since RFC 3046 fails to uniform the Option 82 options. As the DHCP relay device, Ethernet switch supports the extended padding formats for Option 82 sub-options and the padding defaults are as follows:


Sub-option 1: VLAN No. and port index (port physical number minuses 1) of the port receiving the Request message sent by DHCP Client.

Sub-option 2: bridge MAC address of DHCP relay device receiving the DHCP Client Request message.

Sub-option 1: VLAN No. and port index (port physical number minuses 1) of the port receiving the Request message sent by DHCP Client as follows.

0	7	15	23	31
Sub-option Type (0x01)	Length (0x06)		Circuit ID Type (0x00)	Circuit ID Length (0x04)
VLAN ID			Port	Index

Sub-option 2: bridge MAC address of DHCP relay device receiving the DHCPREQUEST message of DHCP Client.

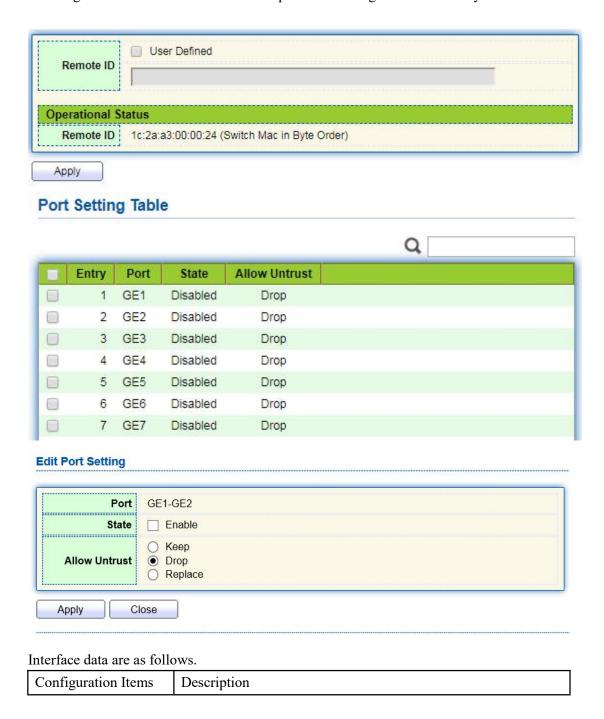
DHCP Relay Supporting Mechanism of Option 82

The processes of DHCP Client acquiring IP address from DHCP Server through DHCP relay is basically the same as that directly from DHCP Server. Steps of discovery, provision, selection, and validation are essential. The supporting mechanism of DHCP relay is introduced as follows:

- (1) DHCP relay will check the Option 82 in the DHCPREQUEST message received and handle it accordingly.
- For existing Option 82 messages, DHCP relay will process according to the configuration policies (discarding, replacing with relay Option 82, or maintaining original Option 82), and then forward to DHCP Server.
- For messages without Option 82, DHCP relay will add and forward the new messages to DHCP Server.
- (2) DHCP relay will peel off Option 82 from the response message received from DHCP Server, and then forward the message with DHCP configuration info to DHCP Client.

Description:

DHCP Client transmits a DHCPDISCOVERY message and a DHCPREQUEST message. DHCP relay will add Option 82 to both messages due to different processing mechanisms of DHCP Servers of manufacturers



for Request message. Some devices handle Option 82 in the DHCPDISCOVERY message, while others handle it in the DHCPREQUEST message.

A switch configured with DHCP Snooping and Option 82 functions receives DHCPREQUEST messages with Option 82 sent by DHCP Clients. DHCP Snooping takes different processing mechanisms according to different configuration processing strategies and sub-option contents.

Instructions:

1. Click the "Security > DHCP Snooping > Option 82 Function Configuration". Global and port configurations are contained. Select the port to be configured and "Modify" the details as follows:

Shenzhen Hongrui Optical Technology Co., Ltd.

Remote ID	Fill in the Remote ID fields in Option 82 (such as user-defined			
	abcd)			
Port	Whether the port No. of Option 82 is enabled			
Untrust Port Access	Untrust Port processes messages with Option 82 enabled:			
	Maintaining: leave Option 82 in the message unchanged and			
	forward it			
	Discarding: discard the message			
	Replacing: replace and forward the Option 82 field in the			
	message according to the Circuit ID configuration			

Description:

Option 82 field independently configures Circuit ID or Remote ID sub-options.

It can be configured individually or simultaneously in no particular order.

DHCP Option 82 must be configured in the user bar, otherwise DHCP messages sent to DHCP Server won't carry Option 82.

When receiving the DHCP response message from DHCP Server, the message containing Option 82 will be forwarded after deleting the field, or forwarded directly if the message contains no Option 82.

- 2. Fill in corresponding configuration items.
- 3. "Apply" and finish as follows.

Port Setting Table

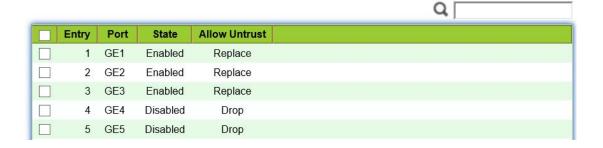
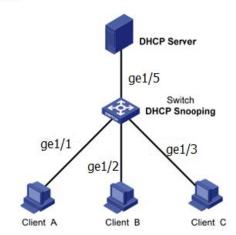


Illustration of DHCP Snooping Typical Configuration

1. DHCP Snooping supports Option 82

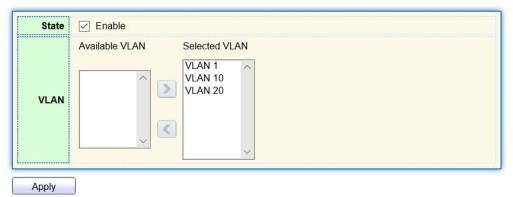
As shown below, Switch port GE1-5 is connected to DHCP Server, and ports GE1-1, 2 and 3 are connected to DHCP Client A, B and C respectively.



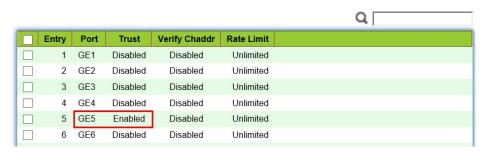
Enable the DHCP Snooping on the switch.

Set the GE1-5 as the trust port of DHCP Snooping.

Enable the Option 82 supporting function on the switch. For GE1-3 message flowing through the port, fill in the Option 82 according to the default configuration of Circuit ID and Remote ID.

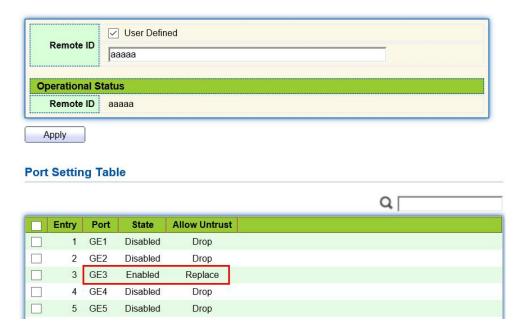

Network Diagram

Configure DHCP snooping to support Option 82


Instructions:

2. Enable the DHCP Snooping of switch. Click the "DHCP Snooping Configuration > Function Configuration" in the navigation tree to enable the function as follows:

3. Set the GE1-5 as the trust port of DHCP Snooping, fill in corresponding configurations and "Modify" as follows:

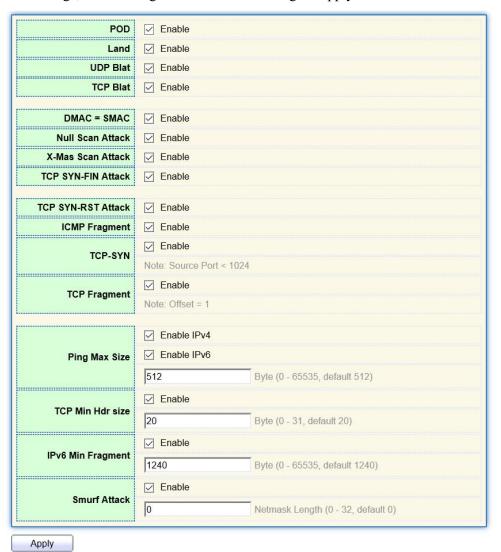

Port Setting Table

4. Configure on the port GE1-3 so that user defined remote ID can be set by Option 82. Click the "DHCP Snooping Configuration > Option 82 Function Configuration", check and configure the port. "Apply" and finish as follows:

5. Configure on the port GE1-3 so that the circuit ID can be set by Option 82. Click the "DHCP Snooping Configuration > Option 82 Circuit ID Function Configuration" to configure the port. "Apply" and finish as follows:

7 Network Security

7.1 DoS Attack Resistance

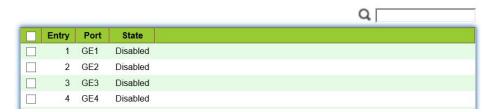

7.1.1 Function Configuration

Enable the Attack Resistance option to make the switch more secure.

Instructions

1. Click the "Security > DoS Attack Resistance > Function Configuration" to the "DoS Global Configuration" to enable the "PoD Attack Resistance", "Land Attack Resistance", "Source/Destination MAC Same Packet Discarding", "ICMP Fragment Packet Discarding". "Apply" and finish as follows.

7.1.2 Port Configuration


DoS attack resistance is enabled based on ports.

Instructions

1. Click the "Security > DoS Attack Resistance > Port Configuration" as follows:

Port Setting Table

2. Select and "Modify" the port to enable or disable the DoS attack resistance function as follows.

7.2 ACL Configuration

Expanding network scale and mounting flow strengthen the position of network security control and bandwidth allocation. Packet filtering prevents illegal users from accessing, control flow and saves network resources. ACL (Access Control List) filters packets by configuring the message matching rules and processing methods.

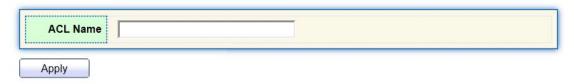
The switch port receiving messages analyzes the field according to the current ACL rules. Once a particular message is identified, it will be allowed or forbidden to flow through according to predetermined policies.

The packet matching rules defined by ACL can also be referenced by other functions requiring flow distinction such as the definition of QoS flow classification rules.

ACL can filter packets by setting matching rules and processing methods. ACL is a collection of permission and denial conditions applicable to packets. When the interface receives the packets, the switch compares the fields and ACL to determine the permitted and denied packets subject to specified standards. ACL classifies packets by matching conditions, which can be the source/destination MAC address, source/destination IP address, port No. and so on. ACL classifies packets by matching conditions, which can be the source/destination address, port No., etc. ACL can be divided into the following categories according to application purposes:

Basic IP ACL formulates rules based only on the source IP address of packets. ACL ID ranges from 100 to 999. Advanced IP ACL prepares rules according to packets' source/destination IP address, protocol types carried by IP, and Layer 3 or 4 info such as protocol characteristics. ACL ID ranges from 100 to 999.

L2 ACL: Rules are made according to the packets' source/destination MAC address, 802.1p priority, and L2 info such as protocol type. ACL ID ranges from 1 to 99.



7.2.1 MAC ACL Configuration

L2 ACL: Rules are made according to source/destination MAC address, VLAN priority, and L2 info such as protocol type.

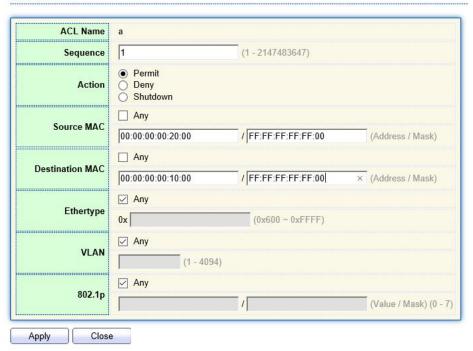
Instructions:

1. Click on the "ACL > MAC ACL Configuration" in the navigation tree as follows.

Interface data are as follows.

Configuration Items	Description
ACL Name	Name the MAC ACL Rules

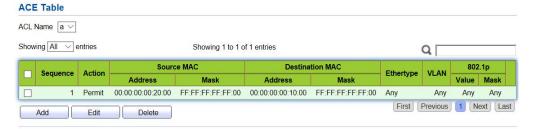
2. Click on the "ACL > MAC ACL Configuration" in the navigation tree, "Add" the ACL name as follows:


Interface data are as follows.

Configuration Items	Description	
ACL Name	ACL rule list is prepared based on MAC ACL	
	configuration.	

3. Fill in corresponding configuration items.

Add ACE



Interface data are as follows.

Configuration Items	Description	
Serial No.	MAC ACL ranges from 1 to 2,147,483,647	
Action ACL actions are divided into "Permit" or "Deny", as "Shutdown".		
Source MAC	Enter the source MAC address and mask of ACL rules with the	
Address	format of H.H.H.H.H. Select "Any" to represent any MAC address	
Destination MAC	Enter the destination MAC address and mask of ACL rules with the	
Address	format of H.H.H.H.H. Select "Any" to represent any MAC address	
Ethernet Type	Enter the Ethernet type of ACL rules ranging from 0 x 600 to 0 x ffff,	
	select "Any" to represent any type.	
VLAN	Enter the VLAN of ACL rules ranging from 1 to 4,094, select "Any"	
	to represent any VLAN	
802.1p	Enter the VLAN priority and mask of ACL rules ranging from 1 to 7,	
	select "Any" to represent any VLAN priority	

4. "Apply" and finish as follows.

7.2.2 IPv4 ACL Configuration

IPv4-based ACL (Basic IP ACL) formulates rules as per the source IP address of packets only. ACL ID ranges from 100 to 999.

Advanced IP ACL Rules are made according to the packets' source/destination IP address, protocol type carried by IP, and Layer 3 or 4 info such as protocol characteristics. ACL ID ranges from 100 to 999. Instructions


1. Click on the "ACL > IPv4 ACL Configuration" in the navigation tree as follows.

Interface data are as follows.

Configuration Items	Description
ACL Name	Name the IPv4 ACL rules

2. Click on the "ACL > IPv4 ACE Configuration" in the navigation tree, "Add" the ACL Name as follows:

Interface data are as follows.

Configuration Items	Description
ACL Name	ACL rule list is made based on IPv4 ACL configuration.

3. Fill in corresponding configuration items.

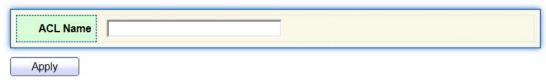
Add ACE

ACL Name	В		
Sequence	100 (1 - 2147483647)		
Action	Permit Deny Shutdown		
Protocol	Any Select ICMP		
Source IP	○ Define ☑ Any	(0 - 255)	(Address / Mask)
	/ Any		(Address / Mask)
Destination IP	Any /		(Address / Mask)
Type of Service	Any DSCP IP Precedence	(0 - 63)	
Source Port	Any Single Range	(0 - 65535)	(0 - 6553
Destination Port	AnySingleRange	(0 - 65535)	(0 - 6553
TCP Flags	Urg: O Set O Unset O D Ack: O Set O Unset O D Psh: O Set O Unset O D Rst: O Set O Unset O D Syn: O Set O Unset O D Fin: O Set O Unset O D	on't care ion't care on't care ion't care	
ICMP Type	Any Select Echo Reply Define	(0 - 255)	
ICMP Code	Any Define	(0 - 255)	

Interface data are as follows.

Configuration Items	Description	
No.	IPv4 ACL ranges from 1 to 2,147,483,647.	
Action	ACL actions are divided into "Permit" or "Deny", as well as "Shutdown".	
Protocol	It is required to select the protocol type such as ICMP, TCP and	

	UDP. Select "Any" to represent any protocol.	
Source IP	Enter the source IP and mask of ACL rules. Select "Any" to	
	represent any source IP.	
Destination IP	Enter the destination IP and mask of ACL rules. Select "Any" to	
	represent any destination IP.	
Service Type	Enter the service type of ACL rules, such as DSCP (0-63) and IP	
	priority (0-7). Select "Any" to represent any service type.	
Source Port	Enter the source port of ACL rules, such as single port No. or range	
	segment (0-65,535). Select "Any" to represent any source port.	
Destination Port	Enter the destination port of ACL rules, such as single port No. or	
	range segment (0-65,535). Select "Any" to represent any destination	
	port.	
TCP Flags	Enter the TCP flags of ACL rules, such as URG, ACK, PSH, RST,	
	SYN, FIN, with the actions such as "Set", "Unset" and "Don't care".	
ICMP Type	Enter the ICMP message type of ACL rules. Select "Any" to	
	represent any ICMP type.	
ICMP Field	Enter the ICMP field value of ACL rules. Select "Any" to represent	
	any field value.	


3. "Apply" and finish as follows.

7.2.3 IPv6 ACL Configuration

Instructions

1. Click the "ACL > IPv6 ACL Configuration" in the navigation tree as follows.

Interface data are as follows.

Configuration Items	Description
ACL Name	Name the IPv6 ACL rules

95

2. Click the "ACL > IPv6 ACE Configuration" in the navigation tree, "Add" the ACL Name as follows:

Interface data are as follows.

Configuration Items	Description
ACL Name	ACL rule list is made based on IPv6 ACL configuration.

3. Fill in corresponding configuration items

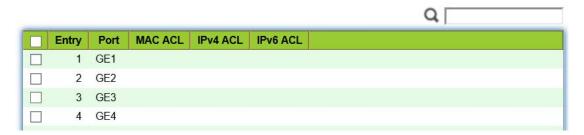
ACL Name	b			
Sequence	100 (1 - 2147483647)		
Action	Permit Deny Shutdown			
	Any			
Protocol	Select TCP ▼			
	○ Define	(0 - 255)		
	☑ Any			
Source IP	<i></i>		(Address /	Prefix (0 - 128))
	✓ Any			
Destination IP	Į į		(Address /	Prefix (0 - 128))
	Any			
Type of Service	● DSCP	(0 - 63)		
		(0 - 7	7)	
	Any			
Source Port	Single	(0 - 65535)		
	Range	-		(0 - 65535)
	Any			
Destination Port	Single	(0 - 65535)		
	○ Range	-		(0 - 65535)
	Urg: Set Unset @) Don't care		
	Ack: Set Sunset @			
	Psh: Set Unset	Don't care		
TCP Flags	Rst: Set Sunset @) Don't care		
	Syn: Set Unset @) Don't care		
	Fin: O Set O Unset O Don't care			
	Any			
ICMP Type Select Destination Unreachable				
	O Define	(0 - 255)		
	Any			
ICMP Code	O Define	(0 - 255)		

Interface data are as follows.

Configuration Items	Description	
No.	IPv6 ACL ranges from 1 to 2,147,483,647.	
Action	ACL actions are divided into "Permit" or "Deny", as well as "Shutdown".	
No.	MAC ACL ranges from 1 to 2,147,483,647.	

Protocol	It is required to select the protocol type such as ICMP, TCP and	
	UDP. Select "Any" to represent any protocol.	
Source IP	Enter the source IP and mask of ACL rules. Select "Any" to	
	represent any source IP.	
Destination IP	Enter the destination IP and mask of ACL rules. Select "Any" to	
	represent any destination IP.	
Service Type	Enter the service type of ACL rules, such as DSCP (0-63) and IP	
	priority (0-7). Select "Any" to represent any service type.	
Source Port	Enter the source port of ACL rules, such as single port No. or range	
	segment (0-65,535). Select "Any" to represent any source port.	
Destination Port	Enter the destination port of ACL rules, such as single port No. or	
	range segment (0-65,535). Select "Any" to represent any destination	
	port.	
TCP Flags	Enter the TCP flags of ACL rules, such as URG, ACK, PSH, RST,	
	SYN, FIN, with the actions such as "Set", "Unset" and "Don't care".	
ICMP Type	Enter the ICMP message type of ACL rules. Select "Any" to	
	represent any ICMP type.	
ICMP Field	Enter the ICMP field value of ACL rules. Select "Any" to represent	
	any field value.	

3. "Apply" and finish as follows.


7.2.4 ACL Binding Configuration

Once the list is created, it must be bound to each required interface. Instructions:

1. Click the "ACL > ACL Binding" in the navigation tree as follows.

ACL Binding Table

Interface data are as follows.

Configuration Items	Description	
MAC ACL	MAC ACL name bound to the port	
IPv4 ACL	IPv4 ACL name bound to the port (mutually exclusive with IPv6 ACL)	
IPv6 ACL	IPv6 ACL name bound to the port (mutually exclusive with IPv4 ACL)	

- 2. Fill in corresponding configuration items, taking the created MAC ACL a, IPv4 ACL b, IPv6 ACL c as examples.
- 3. "Apply" and finish as follows.

8 Advanced Configuration

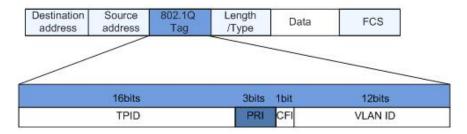
QoS (Quality of Service) assesses the ability of service providers to meet customer needs and the ability of transmitting packets over the Internet. Diversified services can be assessed based on different aspects. QoS usually refers to the evaluation of service capabilities that support core requirements such as bandwidth, delay, delay variation, and packet loss rate during delivery. Bandwidth, also known as throughput, refers to the average rate of business flow in a given period of time, with the unit of Kbit/s. Delay refers to the average time required for business flowing through the network. For a network device, the followings are general levels of delay requirements. There are two delay levels, that is, the high-priority business can be served as

Shenzhen Hongrui Optical Technology Co., Ltd.

soon as possible by scheduling method of priority queue, while the low-priority business gets services after that. Delay variation refers to the time change of business flowing through the network. Packet loss rate refers to the percentage of lost business flow during transmission. As modern transmission systems are very reliable, information is often lost in network congestion. Packet loss due to queue overflow is the most common situation.

All messages in a traditional IP network are treated equally. Every network device processes the messages on a FIFO basis, and makes every effort to transmit them to destinations without guaranteeing reliability, transfer delay, or other performance.

Network service quality is constantly improved as new applications keep springing up in the rapidly changing IP network. For example, VoIP, video and other delay-sensitive services have set higher standards on message transmission delay. Message transmission in a short period has been the common trend. In order to support voice, video and data services with different requirements, the network needs to identify business types and provide corresponding services.

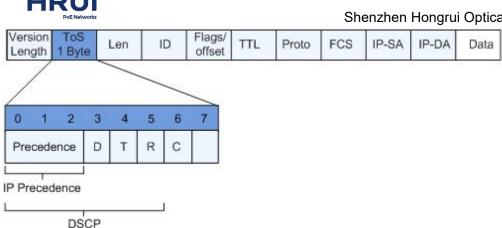

The ability to distinguish business types is the prerequisite to provide corresponding services, so the traditional best-effort service no longer meets the application needs. Therefore, QoS comes into being. It regulates the network flow to avoid and handle network congestion and reduce packet loss rate. Meanwhile, users can enjoy dedicated bandwidths while business can improve service quality, thus perfecting the network service capacity.

QoS priorities vary with message types. For instance, the VLAN message uses 802.1p, also known as the CoS (Class of Service) field, while the IP message uses DSCP. To maintain the priority, these fields need to be mapped at the gateway connected with various networks when messages flow through the network.

802.1p priority in the VLAN frame header

Typically, VLAN frames are interacted between Layer 2 devices. The PRI field (i.e. 802.1p priority), or CoS field, in the VLAN frame header identifies the quality of service requirements according to the definitions in IEEE 802.1Q.

802.1p priority in the VLAN frame


The 802.1Q header contains 3-bit PRI fields. PRI field defines 8 CoS of business priority ranging from 7 to 0 from high to low.

IP Precedence/DSCP Field

According to RFC791 definition, ToS (Type of Service) domain in the IP message header is composed of 8 bits. Among them, the 3-bit long Precedence field, as located in the following, identifies the IP message priority.

IP Precedence/DSCP Field

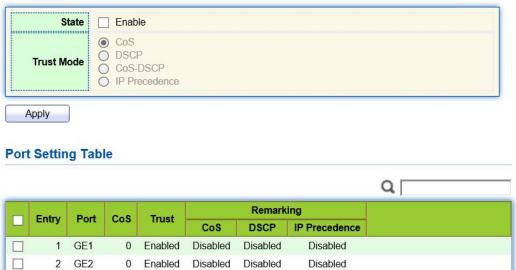
0 to 2 bits are Precedence fields representing the 8 priorities of message transmission ranging from 7 to 0 from high to low, with either Level 7 or 6 as the highest priority that is generally reserved for routing or updating network control communication. User-level applications only have access to Level 0 to 5.

ToS domain, in addition to Precedence fields, also includes D, T and R bits: D-bit represents the Delay requirement (0 for normal delay and 1 for low delay). T-bit represents the throughput (0 for normal throughput and 1 for high throughput). R-bit represents the reliability (0 for normal reliability and 1 for high reliability). ToS domain reserves the 6 and 7 bits.

RFC1349 redefines the ToS domain by adding a C-bit to represent the Monetary Cost. The IETF DiffServ group then redefines the 0 to 5 bits of ToS domain in the IPv4 message header of RFC2474 as DSCP and renames it as DS (Differentiated Service) byte as shown in the figure above.

The first 6 bits (0-5 bits) of DS field distinguish the DSCP (DS Code Point), and the higher 2 bits (6-7 bits) are reserved. The lower 3 bits (0-2 bits) are CSCP (Class Selector Code Point), with the same CSCP value representing the DSCP of the same class. DS nodes select corresponding PHB (Per-Hop Behavior) according to DSCP values.

8.1 QoS Configuration


8.1.1 Basic Configuration

Network congestion resulting from the competition for resource use rights among messages at the same time is usually solved by queue scheduling, thus avoiding intermittent congestions. Queue scheduling technologies include SP (Strict-Priority), WFQ (Weighted Fair Queue), WRR (Weighted Round Robin), and DRR (Deficit Round Robin, which is also expanded from RR technology).

Instructions for global and port scheduling configuration

1. Click the "QoS > Basic Function > Function Configuration" in the navigation tree as follows.

Disabled

Disabled

Interface data of global configuration are as follows.

3 GE3

Configuration Items	Description	
State	Switch of global QoS function	
Trust Mode	e It can be divided into CoS, DSCP, CoS-DSCP and IP priority	

Disabled

Enabled

Interface data of port configuration are as follows.

Configuration Items	Description
CoS	Ranging from 0 to 7
Port Trust Mode	Switch of port QoS function
CoS	Mark the CoS field
DSCP	Mark the DSCP field
IP Priority	Mark the IP Priority field

8.1.2 Queue Scheduling

1. Click the "QoS > Queue Scheduling". "Apply" and finish as follows.

Queue Scheduling Table

	Method				
Queue	Strict Priority	WRR	Weight	WRR Bandwidth (%)	
1	•	0	1		
2	•	0	2		
3	•	0	3		
4	•	0	4		
5	•	0	5		
6	•	0	9		
7	•	0	13		
8	•	0	15		

Interface data are as follows.

Configuration Items	Description	
SP	SP mode	
WRR	WRR mode	
Weight	Bandwidth percentage of WRR accounted for by Queue	

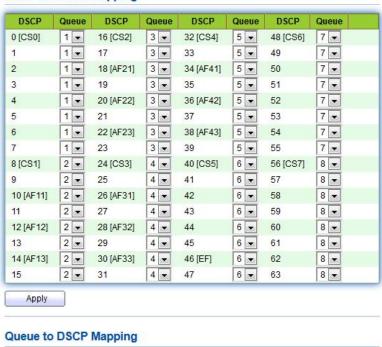
8.1.3 CoS Mapping

1. Click the "QoS > CoS Mapping" in the navigation tree. "Apply" and finish as follows.

CoS to Queue Mapping

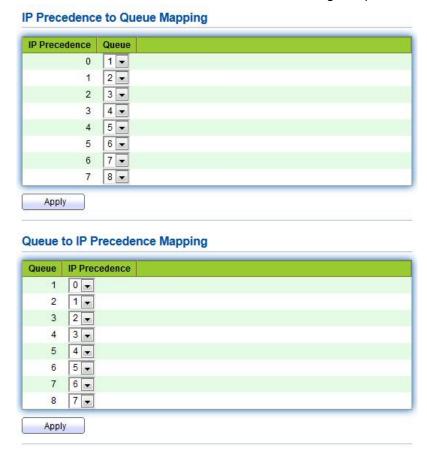
Queue to CoS Mapping

Interface data are as follows.


Configuration Items	Description	
SP	SP mode	
WRR	WRR mode	
Weight	Bandwidth percentage of WRR accounted for by Queue	


8.1.4 DSCP Mapping

1. Click the "QoS > Queue Scheduling". "Apply" and finish as follows.


Interface data are as follows.

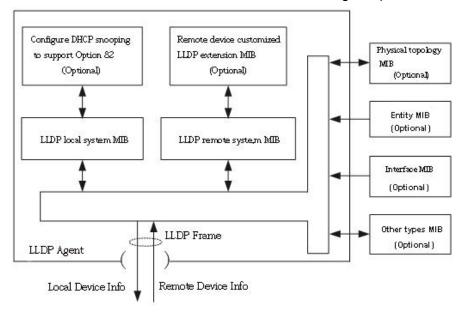
Configuration Items	Description	
SP	SP mode	
WRR	WRR mode	
Weight	Bandwidth percentage of WRR accounted for by Queue	

8.1.5 IP Priority Mapping

1. Click the "QoS > Basic Functions > IP Precedence Mapping", enter this page and click "Apply", finish as follows.

Interface data are as follows.

Configuration Items	Description	
SP	SP mode	
WRR	WRR mode	
Weight	Bandwidth percentage of WRR accounted for by Queue	


8.2 LLDP Configuration

LLDP (Link Layer Discovery Protocol) is defined in IEEE 802.1ab. It is a standard L2 discovery method which integrates the info such as management addresses, device and interface identifications of local network devices and transmits to the neighbor devices. After receiving the info, they will save it in form of standard MIB (Management Information Base) for NMS query and link communication judgment.

It can also integrate the info and transmit to its own remote devices. The info received by the local network device will be kept in the form of MIB. The following shows how it works.

Block diagram of LLDP principles

LLDP is realized based on:

- LLDP module updates its local system MIB, as well as the customized extension MIB, through the interaction between LLDP agent and MIBs of physical topology, entity, interface and other types.
- Encapsulate the info of local network device into LLDP frames and transmit to the remote device.
- Receive the LLDP frame sent by the remote device to update LLDP remote system MIB and customized extension MIB.
- Master the info of remote device such as connection interface and MAC address through the transmitting & receiving function of LLDP agent.
- The local system MIB stores local device info, including device and interface IDs, system name and description, interface description, network management address, etc.
- The remote system MIB stores local device info, including device and interface IDs, system name and description, interface description, network management address, etc.

Based on **LLDP**, **LLDP-MED** allows other units to expand. The info checked by network devices facilitates fault analysis and deepens the accurate understanding of network topology by management system.

8.2.1 LLDP Function Configuration

Instructions:

1. Click the "Topology Discovery > LLDP > Function Configuration" in the navigation tree as follows.

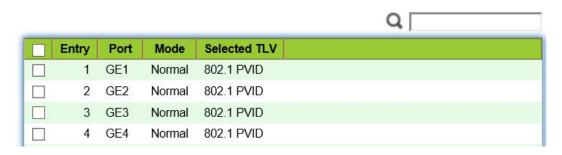
State		
LLDP Handling	Filtering Bridging Flooding	
TLV Advertise Interval	30	Sec (5 - 32767, default 30)
Hold Multiplier	4	(2 - 10, default 4)
Reinitializing Delay	2	Sec (1 - 10, default 2)
Transmit Delay	2	Sec (1 - 8191, default 2)
P-MED		
ast Start Repeat Count	3	(1 - 10, default 3)

Interface data are as follows.

Configuration Items	Description	
State	Enable or disable the LLDP	
LLDP Message	LLDP messages will be processed by means of "Filtering",	
Processing	"Bridging" and "Flooding" when disabling the LLDP.	
Transmission Period	30s by default ranging from 5 to 32,768s.	
Hold Multiplier	Transmission period product with 4 by default ranges from 2 to 10.	
	Transmission period * product should be no more than 65,535.	
Delay	2s by default ranging from:1 to 10s.	
Re-initialization		
Transfer Delay	2s by default ranging from:1 to 8,191s.	
Repeat Count Quick	3s by default of the LLDP-MED port ranging from 1 to 10s.	
Start		

Ethernet message encapsulated with LLDPDU (LLDP Data Unit) are recognized as LLDP message. Each TLV is a unit of LLDPDU carried with specified info.

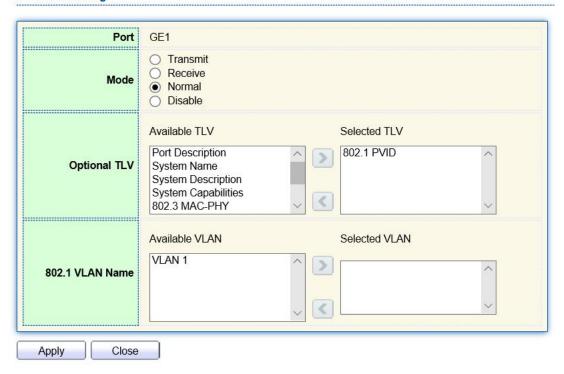
- 2. Fill in corresponding configuration items
- 3. "Apply" and finish.


8.2.2 Port Configuration

Instructions

1. Click the "Topology Discovery > LLDP > Port Configuration" in the navigation tree as follows.

Port Setting Table


Interface data are as follows.

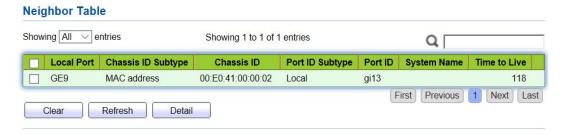
Configuration	Description
Items	
Port	Multiple ports are available.
Transmitting &	LLDP transmitting & receiving mode
Receiving Mode	
Selected TLV	Info of selected TLV and VLAN

LLDP can work in 4 patterns: Transmit: transmit LLDP messages only; Receive: receive LLDP messages only; Normal: transmit and receive LLDP messages; Disable: neither transmit nor receive LLDP messages.

2. Check corresponding port and "Modify" the port configuration. "Apply" and finish as follows.

Edit Port Setting

Interface data are as follows.



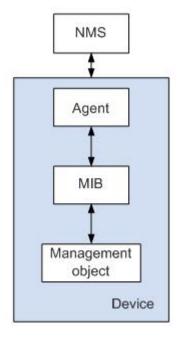
Configuration	Description
Items	
Port	Multiple ports are available
Transmitting &	LLDP transmitting & receiving mode. Transmit: transmit LLDP
Receiving Mode	messages only; Receive: receive LLDP messages only; Normal:
	transmit and receive LLDP messages; Disable: neither transmit nor
	receive LLDP messages.
Optional TLV	Select the info of TLV and VLAN
VLAN Name	Select the VLAN name

8.2.3 Neighbor Info

Instructions for LLDP neighbor displaying

Click the "Topology Discovery > LLDP > Neighbor Info" in the navigation tree as follows.

8.3 SNMP Configuration


SNMP (Simple Network Management Protocol) is widely used in TCP/IP network. It manages devices by the central computer which operates network management software (i.e. network management workstation). SNMP is:

Simple: The polling-driving SNMP has the fundamental functionality set that is applicable to small-scale environment with fast speed and low cost. Besides, UDP-driven SNMP is compatible with most devices. Powerful: SNMP aims to ensure the management info transmission between two nodes so that administrators can retrieve, modify and troubleshoot the info easily. There are 3 common versions, namely SNMPv1, v2c and v3. Its system contains NMS (Network Management System), Agent, Management object and MIB (Management Information Base).

NMS, as the management center, will manage all devices. Each device under management includes the resident Agent, MIB and management objects. NMS interacts with the Agent running on the management object which will operate the MIB to execute NMS orders.

SNMP management model

NMS

• As the network administrator, NMS manages/monitors network devices by SNMP on its server. It can request the Agent to inquire or modify specified parameter(s). NMS can receive the Trap actively sent by the Agent to be updated with the states of the managed devices.

Agent

• As an agent process of the managed devices, it maintains device data and responds to the NMS requests by reporting management data. Agent will fulfill relevant orders through MIB Table and transmit the results back to NMS after receiving its request. Devices will take the initiative to transmit info related to the current statues of devices to NMS through Agent once a fault or another event occurs.

Management object

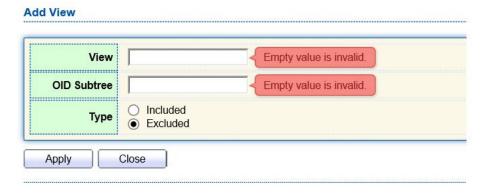
• It refers to the object under management. Each device may have more than one objects, including a piece of hardware (e.g. an interface board), partial hardware and software (e.g. routing protocol), as well as other configuration item sets

MIB

• MIB is a database specifying the variables maintained by the management object (i.e. the info that can be inquired and set by the Agent). MIB defines the attributes of the management object, including the name, state, access right and data type. The following functions can be realized through MIB: Agent will master the instant device info by inquiring MIB and set the state configuration items by changing MIB.

8.3.1 View Configuration

1. Click the "Device Management > SNMP Configuration > View Configuration" in the navigation tree as follows.



View Table Showing All ∨ entries Showing 1 to 1 of 1 entries Q View **OID Subtree** Type all Included First Previous Next Last Add Delete

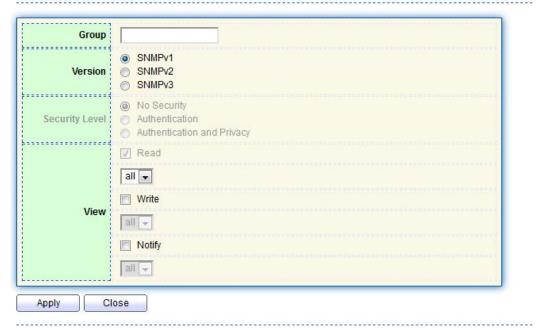
Interface data are as follows.

Configuration	Description
Items	
View	View name
OID	View OID
Туре	View type: "Included" or "Excluded"

2. "Add" the corresponding configuration, "Apply" and finish.

8.3.2 Group Configuration

1. Click the "Device Management > SNMP Configuration > Group Configuration" in the navigation tree as follows.


Group Table Showing All ∨ entries Showing 0 to 0 of 0 entries Q View Group Version **Security Level** Write Notify Read 0 results found. First Previous Next Last Configure SNMP View to associate a non-default view with a group. Add Edit Delete

Interface data are as follows.

Configuration Items	Description
Group	Group name
Version	V1, V2, V3
Security Level	Security level
View	Views are divided into view reading, writing and notification.

2. Click the "Add" to fill in corresponding configuration. "Apply" and finish.

Add Group

8.3.3 Group Configuration

1. Click the "Device Management > SNMP Configuration > Group Configuration" in the navigation tree as

follows.

Community Table

Interface data are as follows.

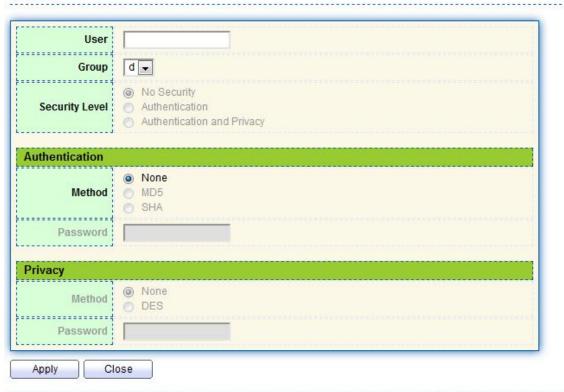
Configuration	Description
Items	
Community	Community configuration
Group	Group name
View	View name
Access:	Authority: read only or read-write

2. "Add" the corresponding configuration. "Apply" and finish.

8.3.4 User Configuration

1. Click the "Device Management > SNMP Configuration > User Configuration" in the navigation tree as follows.

User Table



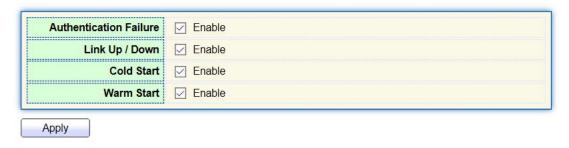
Interface data are as follows.

Configuration	Description
Items	
User	Username
Group	Group name
Security Level	Security level
Authentication	Authentication mode
Privacy Password	Encryption mode

2. "Add" the corresponding configuration. "Apply" and finish.

Add User

8.3.5 Engine ID Configuration


1. Click the "Device Management > SNMP Configuration > Engine ID Configuration" in the navigation tree as follows.

2. Click the "User Automation" to fill in corresponding ID value. "Apply" and finish.

8.3.6 Trap Configuration

1. Click the "Device Management > SNMP Configuration > Trap Configuration" in the navigation tree as follows.

Interface data are as follows.

Configuration	Description
Items	
Authen Failure	Authentication error

Shenzhen Hongrui Optical Technology Co., Ltd.

Link Up/Down	Port link up/down
Cold start	Cold start
Warm start	Warm start

^{2. &}quot;Apply" and finish.

8.3.7 Notification Configuration

1. Click the "Device Management > SNMP Configuration > Notification Configuration" in the navigation tree as follows.

Interface data are as follows.

Configuration	Description
Items	
Address Type	Address type: "Host Name", "IPv4" or "IPv6"
Server Address	Server address info
Version	SNMP versions: v1, v2 and v3
Type	Notification type: "Trap" or "Inform"
Community/User	Community or username
Security Level	Security level
Server port No.	162 by default ranging from 1 to 65,535
Timeout	Timeout period: 15s by default ranging from 1 to 300s.
Retry	The retry interval ranges from 1 to 255s with 3s by default.

2. "Add" the corresponding configuration. "Apply" and finish.

Add Notification

Hostname Address Type IPv4 IPv6 Server Address SNMPv1 SNMPv2 SNMPv3 Trap Туре O Inform Community / User public ~ No Security Security Level Authentication and Privacy ✓ Use Default Server Port (1 - 65535, default 162) Use Default Sec (1 - 300, default 15) ✓ Use Default Retry (1 - 255, default 3) Apply Close

8.4 RMON Configuration

RMON (Remote Monitoring) is a MIB defined by the IETF (Internet Engineering Task Force) and significantly emphasizes the MIB II standard. It mainly monitors data flow in a network segment or even the whole network, which is one of the widely used network management standards. RMON includes NMS (Network Management Station) and Agent running on various Network devices. RMON Agent running on network monitors or detectors will track and count flow info (e.g. the total number of messages on a network segment during a certain period of time, or that of correct messages sent to a host) on the network segment connected to the port. Based on SNMP architecture, RMON is compatible with the existing SNMP framework. SNMP monitors remote network devices in a more efficient and active manner to supervise subnet operation. RMON can reduce communication flow between NMS and SNMP Agent to manage the large-scale interconnection network conveniently and effectively. Multiple monitors are allowed to collect data by 2 means: The exclusive RMON probe is used to collect data, and the NMS directly manages info and controls network resources. All RMON MIB info can be obtained. RMON Agent with direct access to network devices (router, switch, HUB, etc.) will become the network facility with RMON probe function. RMON NMS exchanges data with SNMP Agent with SNMP basic command to collect network management info. However, limited by device resources, it generally fails to obtain all data of RMON MIB. Most devices collect data from only four groups: alarm, event, history and statistics groups. Area-type switch realizes RMON in the second way. RMON Agent directly accessing switches will become the network facility with RMON probe function. By running the SNMP Agent supported by switches, NMS can obtain overall flow, error statistics, performance statistics and other info on the network segments connected to ports, so as to manage the network.

8.4.1 Port Statistics


The statistics group info reflects the statistics of each monitoring interface on the switch, namely the info accumulated from the beginning of group creation. Statistics include the number of network conflicts, CRC error messages, too-small (too-large) data messages, broadcast/multicast messages, bytes and messages received, etc. With the RMON statistics and management functions, port usage and errors occurred can be monitored and counted respectively.

Instructions

1. Click the "Device Management > RMON Configuration > Message Statistics" in the navigation tree as follows, which reveals the port-related message statistics.

2. "Clear" and "Refresh" the statistics of the selected port. "View" such statistics as follows.

3. Select the specified refresh frequency to operate automatically.

8.4.2 History Configuration

Shenzhen Hongrui Optical Technology Co., Ltd.

Once configuring the RMON history group, the switches will periodically collect and temporarily store the network statistics for processing ease, providing historical data on network segment flow, error packets, broadcast packets, bandwidth utilization, and other statistics. Historical data management can be used to set up devices in terms of historical data collection including periodical collection and maintenance of the data of specified ports.

Instructions


1. Click the "Device Management > RMON Configuration > History Configuration" in the navigation tree as follows

Interface data are as follows.

Configuration Items	Description
Entry	Serial No. of event groups
Port	Ports to be counted
Interval	Sampling interval ranging from 1 to 3,600 (unit: s), with 1,800s by
	default.
Owner	Owner
Maximum	The max number of samples ranges from 0 to 50, with 50 by default.
Current	Current number of samples

3. "Add" corresponding configuration items to configure history group.

4. "Apply" and finish as follows.

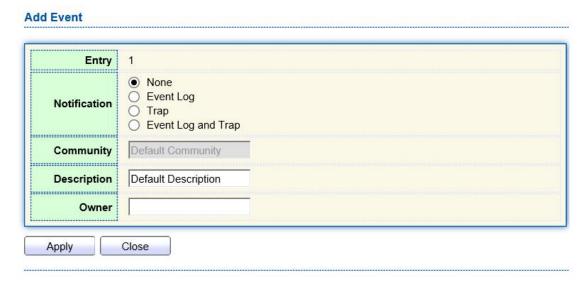
8.4.3 Event Configuration

Defining event No. and process way, event group is mainly for the events triggered by alarm group configuration items and extended alarm group configuration items. There are several solutions to them: recording in a log table; transmitting a Trap messages to NMS; recording a log and transmitting a Trap message; Don't care.

Instructions

1. Click the "Device Management > RMON Configuration > Event Configuration" in the navigation tree as follows.

Interface data are as follows.


Configuration	Description
Items	
Entry	Serial No. of event groups
Community	Community name
Description	Description

Notification	Notification
Timer	Time
Owner	Owner

2. "Add" corresponding configuration items to configure the event group.

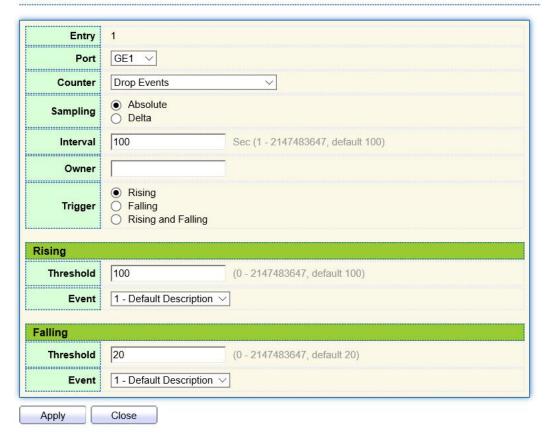
3. "Add" and finish as follows.

8.4.4 Alarm Configuration

RMON alarm management monitors specific alarm variables, such as port statistics. An alarm event occurs when the value of monitored data exceeds the defined threshold in the corresponding direction, which will be treated according to the prescribed treatment mode. Event definition is realized in event group. System will process as follows after a user defines the alarm entry: The alarm-variable defined by sampling-time should be sampled and the value should be compared with the threshold. For higher threshold, the corresponding event

will be triggered.

Click the "Device Management > RMON Configuration > Alarm Configuration" in the navigation tree as follows.


Interface data are as follows.

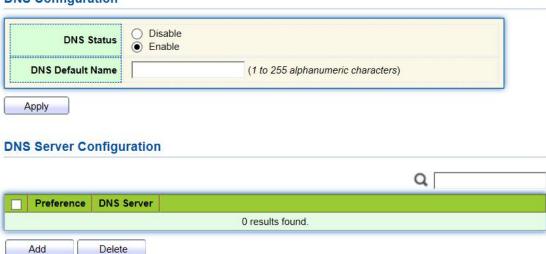
Configuration Items	Description
Entry	Serial No. of alarm groups
Port	Enter the ports to be counted
Counter	Sample parameters of alarms
Interval	Sampling interval ranges from 1 to 2,147,483,647 with the unit of second. 100s by default.
Sampling	Sample types: Absolute and Delete
Owner	Owner
Threshold (Rising)	The threshold of rising edge ranges from 0 to 2,147,483,647.
Event (Rising)	Event group index. Corresponding event will be activated when alarm is triggered.
Threshold (Falling)	The threshold of falling edge ranges from 0 to 21,474,836,475.
Event (Falling)	Event group index. Corresponding event will be activated when alarm is triggered.

2. "Add" corresponding configuration items to configure the alarm group.

Add Alarm

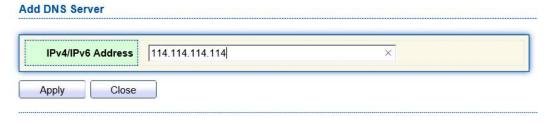
3. "Apply" and finish as follows.

8.5 DNS Configuration


DNS is short for Domain Name System to name computers and network services from units to domain hierarchies. A domain name consists of the dots separated by a series of words or abbreviations, each corresponding to a unique IP address. DNS is the server on the Internet that resolves domain names. Applicable to Internet and other TCP/IP networks, DNS name retrieves computers and services through user-friendly names. As one of the core Internet services, DNS is a distributed database that maps domain names and IP addresses mutually.

Instructions:

1. Click on the "Network Configuration > DNS Configuration" in the navigation tree as follows.


DNS Configuration

Interface data are as follows.

Configura	ation	Description
Items		
DNS Stat	e	DNS switch
DNS	Default	Enter the DNS default name
Name		

2. "Add" to configure DNS server.

3. "Apply" and finish as follows.

8.6 System Time

It is mainly used to configure the system time, and select the time source, daylight-saving time, etc. Instructions

1. Click on the "Network Configuration > System Time" in the navigation tree as follows.

Interface data are as follows.

Configuration Items	Description
Time Source	Select the time source in SNTP, PC or manual modes
Time Zone	Set the time zone
Address Type	Host name or IPv4 address (with time source set by SNTP)

Server Address	Server Address (with time source set by SNTP)
Server Port No.	Server Port No. (with time source set by SNTP)
Date	Date info: dd/mm/yyyy (with time source set in manual mode)
Time	Time info: s/min/hr (with time source set in manual mode)
Туре	Daylight-saving time types are divided into None, cyclic, non-cyclic,
	United States and Europe.
Reimbursed Time	Reimbursed Time of daylight-saving time
Cyclic Mode	Configure the cyclic mode of daylight-saving time
Non-cyclic Mode	Configure the non-cyclic mode of daylight-saving time

9 DHCP

9.1 DHCP Server brief introduction

With the expansion of network scale and the improvement of network complexity, network configuration is becoming more and more complex. Computer location changes (such as portable computer or wireless network) and the number of computers exceeds the IP address that can be allocated.

Dynamic Host Configuration Protocol (DHCP) is developed to meet these requirements. The DHCP protocol works in the client / server mode. The DHCP client requests the configuration information from the DHCP server dynamically, and the DHCP server returns the corresponding configuration information according to the policy.

In a typical application of DHCP, it generally includes a DHCP server and multiple clients (such as PC and laptop), as shown in Figure 1-1.



Figure 1-1. In a typical application of DHCP

9.2 IP address assignment of DHCP

9.2.1 IP address allocation strategy

According to the different needs of clients, DHCP provides three IP address allocation strategies

- Manual address assignment: the administrator binds the fixed IP address for a few specific clients (such as WWW server). Send the configured fixed IP address to the client through DHCP.
- Automatic address assignment: DHCP assigns IP addresses with unlimited lease term to clients.
- Dynamic address assignment: DHCP assigns IP address with valid period to client, and client needs to re-apply for address after expiration of service life. The vast majority of clients get this dynamic address assignment.

9.2.2 Dynamic IP address acquisition process

The message interaction process between DHCP client and DHCP server is shown in Figure 1-2.

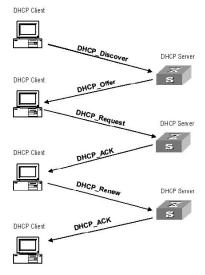


Figure 2-1. Interaction process

In order to obtain the legal dynamic IP address, the DHCP client interacts different information with the server at different stages. Generally, there are three modes as follows:

(1) DHCP client logs in to the network for the first time

When the DHCP client logs in to the network for the first time, it mainly establishes contact with the DHCP server through four stages

• The discovery phase: the stage in which the DHCP client looks for the DHCP server. The client sends the DHCP discover message in broadcast mode, and only the DHCP server will respond.

- The stage of providing IP address: that is, the stage when the DHCP server provides IP address. After receiving the DHCP discover message from the client, the DHCP server selects an unassigned IP address from the IP address pool and assigns it to the client, and sends the DHCP offer message containing the leased IP address and other settings to the client.
- The selection stage: the stage in which the DHCP client selects the IP address. If more than one DHCP server sends a DHCP offer message to the client, the client only accepts the first received DHCP offer message, and then responds to the DHCP request message by broadcasting to each DHCP server. The information contains the content of requesting IP address from the selected DHCP server.
- The confirmation stage: the stage in which the DHCP server confirms the IP address provided. When the DHCP server receives the DHCP request message answered by the DHCP client, it will send the dhcp-ack confirmation message containing the IP address and other settings provided by the client; otherwise, it will return the dhcp-nak message, indicating that the address cannot be assigned to the client. After receiving the dhcp-ack confirmation message returned by the server, the client will send ARP (the destination address is the address to which it is assigned) in broadcast mode for address detection. If no response is received within the specified time, the client will use this address.

(2) The DHCP client logs on to the network again

When the DHCP client logs in to the network again, it mainly establishes contact with the DHCP server through the following steps.

- After the DHCP client logs in to the network correctly for the first time and then logs in to the network again, it only needs to broadcast the DHCP request message containing the IP address assigned last time, and it is not necessary to send the DHCP discover message again.
- After receiving the DHCP request message, if the address requested by the client is not assigned, the dhcp-ack confirmation message will be returned to notify the DHCP client to continue using the original IP address.
- If the IP address cannot be assigned to the DHCP client (for example, it has been assigned to other clients), the DHCP server will return a dhcp-nak message. After receiving the message, the client sends the DHCP discover message again to request a new IP address.

(3) DHCP client extends lease validity of IP address

The dynamic IP address assigned by the DHCP server to the client usually has a certain lease term. After the expiration, the server will take back the IP address. If the DHCP client wants to continue using the address, the IP lease needs to be updated.

In practice, the DHCP client sends a DHCP request message to the DHCP server by default when the IP address lease term reaches half to complete the IP lease update. If the IP address is valid, the DHCP server will respond to the dhcp-ack message to inform the DHCP client that a new lease has been obtained.

9.3 DHCP global configuration

DHCP global and static binding configuration

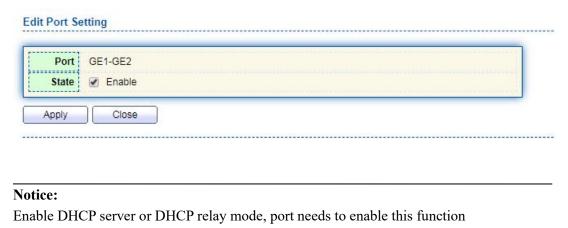
1. Click the "DHCP > Property" in the navigation tree as follows.

Port DHCP configuration

5

GE4

GE5

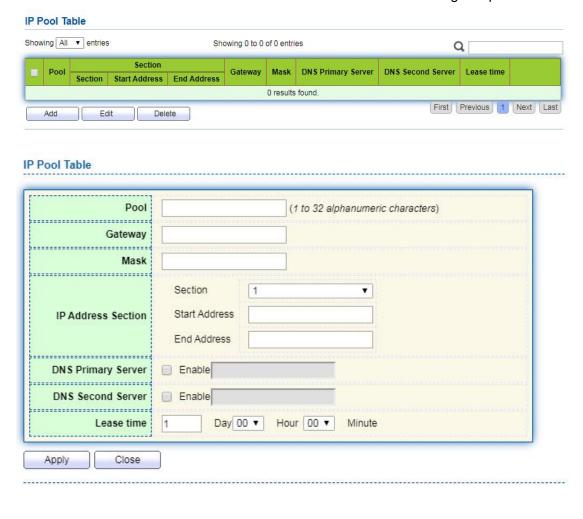

GE6

Disabled

Disabled

Disabled

1. Click the "DHCP > Property", and select the port and click "Edit" as follows.



9.4 IP Pool Setting

DHCP IP pool configuration

1. Click the "DHCP > IP Pool Setting", Click "Add" to add IP pool as follows.

Notice:

The start address and end address cannot be configured or contain a gateway address

9.5 VLAN IF Address Group Setting

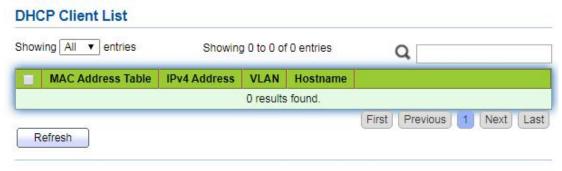
Server group configuration

1. Click the "DHCP > VLAN IF Address Group Setting", enter the DHCP Server Group Table and click "Add" to configure the server group as follows.

Group ID Group IP Address Bind VLAN Interface 0 results found. Add Edit Delete DHCP Server Group Table DHCP Server Group I Group IP Address Apply Close

VLAN interface and server group binding configuration

1. Click the "DHCP > VLAN IF Address Group Setting", enter the VLAN Interface Address Pool Table, select the interface and server group, and then click "Apply" as follows.


9.6 Client List

Client list information

1. Click the "DHCP > Client List", enter DHCP Client list as follows.

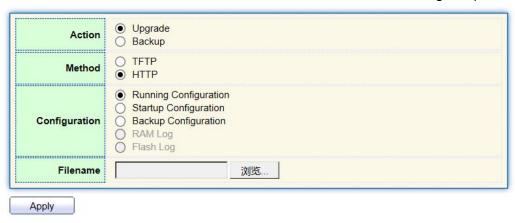
Shenzhen Hongrui Optical Technology Co., Ltd.

9.7 Client Static Binding Table

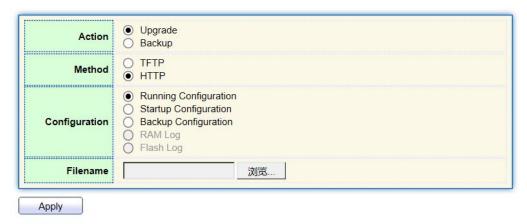
Static IP address assignment configuration

1. Click the "DHCP > Client Static Binding Table", enter Static Binding Table, and click "Add" as follows.

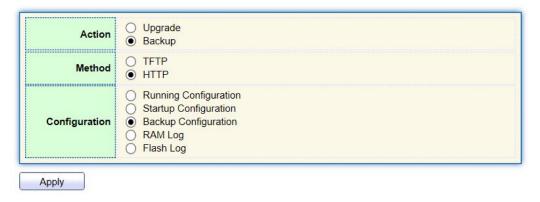
Notice:


The IP configuration of static binding is required to be within the scope of IP address assignment

10 System Maintenance


10.1 Configuration Management

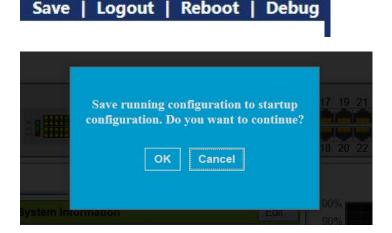
1. Click the "Device Management > Configuration Management > Upgrade/Backups" in the navigation tree as follows.



2. Instructions for configuration file upgrade: click the "Upgrade" in mode of "TFTP" or "HTTP", select the corresponding files to be upgraded (servers should be illustrated in TFTP mode). "Apply" and finish as follows.

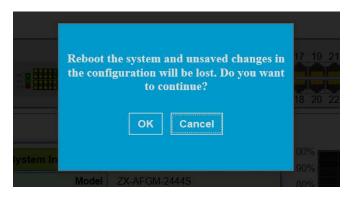
3. Instructions for file backup configuration: click the "Backup" in mode of "TFTP" or "HTTP", select the files or logs to be upgraded (servers should be illustrated in TFTP mode). "Apply" and finish as follows.

10.2 Configuration Saving


Instructions:

1. Click the "Device Management > Configuration Management > Configuration Saving" in the navigation tree, select the source and target files to be saved, "Apply" and finish. Click the "Factory Reset" as needed as follows:

- 1. Click the "Factory Reset" and "Device Restart" to restore factory settings.
- 2. Save the "Running Configuration" as the "Start Configuration" (which can be saved as "Backup Configuration" or "Running Configuration") and the "Backup Configuration" (which can be saved as the "Start Configuration" or "Running Configuration").
- 3. Click the "Save" on the upper right to save the running configuration as the start configuration as follows.



10.3 Device Restart

Click the "Restart" on the upper right as guided as follows.

10.4 Firmware Management

Instructions:

1. Click the "Device Management > Firmware Management > Upgrade/Backups" in the navigation tree as follows.

Check the "Upgrade" in mode of "TFTP" or "HTTP" and select the system files (xx.bix) to be upgrade. "Apply" and finish as follows.

